
RE-TARGETABLE GRAMMAR BASED TEST
CASE GENERATION

JOE ROZNER / @JROZNER

TESTING PARSERS IS
HARD

�2

HOW WE GOT HERE

▸ Mostly clean room (ish) implementation of complex languages (context-free-
ish)

▸ ~35k lines of grammar in total (ANTLR)

▸ Implemented from incomplete, inaccurate, and contradictory documentation

▸ Radically different parsing algorithm(s) from original implementations

▸ Lack of public test cases for most dialects

�3

ARE WE CORRECT?

▸ What is correct?

▸ Can we be 100% correct?

▸ How do we quantify how correct an implementation is?

▸ How do we test the implementations?

▸ How do we get better?

�4

GETTING MORE TEST CASES?

▸ Request query logs from customers

▸ Stand up applications and record their queries

▸ Automatically generate test cases with a fuzzer

�5

PROBLEMS WITH TRADITIONAL TEST CASE GENERATION

▸ Inflexibility with using test cases

▸ Inflexibility with providing feedback

▸ Existing tools solve many cases but as you deviate they become less useful

STYLES OF FUZZING

INSTRUMENTATION + RANDOM MUTATION

▸ Focus on path exploration and code coverage

▸ No concept of syntax/semantics

▸ Wont necessarily provide lot’s of coverage for variations of a specific parse tree

▸ Might spend a lot of time on uninteresting/non-relevant code paths

▸ Not immediately clear how to build a proper test harness

▸ Example of this strategy is AFL (American Fuzzy Lop)

▸ https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

�8

https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

“THE FIRST IMAGE, HIT AFTER
ABOUT SIX HOURS ON AN 8-CORE
SYSTEM…”

“…CERTAIN TYPES OF ATOMICALLY EXECUTED
CHECKS WITH A LARGE SEARCH SPACE MAY
POSE AN INSURMOUNTABLE OBSTACLE TO THE
FUZZER…”

if (strcmp(header.magic_password, "h4ck3d by p1gZ”))
 goto terminate_now;

“IN PRACTICAL TERMS, THIS MEANS THAT AFL-
FUZZ WON'T HAVE AS MUCH LUCK ‘INVENTING’
PNG FILES OR NON-TRIVIAL HTML DOCUMENTS
FROM SCRATCH…”

INSTRUMENTATION + SOLVING

▸ Focus on path exploration and code coverage

▸ Instrument the code and solve for new paths

▸ Still doesn’t care about syntax/semantics

▸ Still not clear how to build a more customer test harness

▸ Not necessarily easy to gate off specific paths that are uninteresting

▸ Example of this is KLEE

�13

GRAMMAR BASED

▸ Uses a grammar to generate syntactically correct sentences

▸ Typically provide their own grammar language

▸ Mostly targeted at regular/context-free text based languages

▸ Example of this is Mozilla Dharma

▸ https://github.com/MozillaSecurity/dharma

�14

https://github.com/MozillaSecurity/dharma

LET’S ITERATE

▸ Create a platform with parser primitives that can generate instead of parse

▸ Provide support for multiple frontends so manual translation from one
grammar language to another is not required

▸ Be expressive enough for regular, context-free, and context-sensitive
languages both text and binary

▸ Embeddable and usable from any language

▸ Composable and flexible

�15

STRUCTURE

▸ Composable libraries

▸ Target + Generation

▸ Frontends

▸ Test harnesses

�16

DEMO

▸ Expose a C-compatible API

▸ Starting work on frontends

▸ Better negation logic

▸ Context-Sensitive/Introspective generators

▸ Functional comparison between results with traditional fuzzers

WHAT’S NEXT?

�18

QUESTIONS?
JOE@DEADBYTES.NET / @JROZNER

mailto:joe@deadbytes.net

