LangSec revisited:
input security flaws of the 2"9 kind

Erik Poll

Digital Security
Radboud University Nijmegen

Motivations

« Lots of (well-justified!) LangSec efforts to eliminate parser bugs,
but what about input problems that do not involve parser bugs?

 (How) do existing efforts to tackle such input problems fit in with the
LangSec paradigm?

« Eg efforts at Google to combat XSS

« Can we extend the taxonomy of LangSec anti-patterns & remedies?

Caveats:

« Some answers are obvious, but took me some time to spot

* I’m only connecting some dots | happen to be aware of;
there may well be others

Erik Poll

(At least) two types of INPUT problems

1. Buggy processing

 Bug in processing input causes application to go of the rails
 Eg buggy parsing, parser differentials, flaw in program logic

« Classic example: buffer overflow in a PDF viewer, leading to remote code
execution

This is unintended behaviour, introduced by mistake
2. Flawed forwarding (aka injection attacks)

* Inputis forwarded to back-end servicelsystem/API, to cause damage there

« Classic example: SQL injection, XSS, Word macros

This is intended behaviour of the back-end, introduced deliberately,
but exposed by mistake by the front-end

Erik Poll 3

Processing vs Forwarding Flaws

Processing Flaws

a bug!
m'a’;iﬁi!?rus /application\
g — Q"
_ /

Forwarding Flaws
(abuse of) a feature !

malicious

'“F“T /application\ back-end A
g rvice

_ _/ eg SQL J
query

Erik Poll

More back-ends, more languages, more problems

g malicious SQLi SQL
input ’ database
\ ls command
]) injection
application [}

LDAP ’

OS

XSS
el injection FDAP
browser J SARASL

Erik Poll

Familiar root causes of forwarding flaws

« |Input languages:

too many, overly complex, ill-specified, and overly expressive

 eg SQL, OS commands, path names, HTML (incl. CSS & javascript), ...

« Parsing:
but unintended parsing, rather than buggy parsing.

« Some shotgun parsing is unavoidable, as back-end will have to do
some parsing

Erik Poll

How & where to tackle input problems?

Tackling processing flaws @
a N

o application Simple & clear language spec,
mghcuous g o] generated parser code,
mgut ' 3 complete parsing before
® any further processing
/

Which bits

. .]
Tackling forwarding flaws* @ are input?

malicious 4 application A ™
input) back-end
ﬂ o ? n ' S | service
/ | : g
Where will this ~ — j Y
input end up? validation
and/or

sanitisation (aka encoding aka escaping)?

Erik Poll 7

Anti-patterns
in tackling forwarding flaws

Anti-pattern: INPUT E,SMNMQ

« Input escaping, eg. processing /nputs to escape dangerous
meta-characters, is a bad idea

- at the point of input, the context in which inputs will be used
(eg as path name, in SQL query, or as HTML)
is unclear, and different contexts require different solutions

» classic anti-example: PHP magic-quotes

 Oulput escaping makes more sense, because there context is known

* butthere it can be unclear which data originates from input

application 4 Backiend
g > ~§ service
2
/ :
input validation, \ \)
refecting invalid input output sanitisation

Erik Poll

aka escaping to make oultput harmless

Anti-pattern: RTRING CONCATENATION

 Recipe for disaster: concatenate several pieces of data,
some of them user input, and pass this on to some API

« Classic example: SQL injection
* Note: string concatenation is inverse of parsing

 Forwarding flaws can be parsing problems, namely if back-end parses
data differently than the front-end serialised it

* but, you can still have forwarding problems without any
serialisation in the front-end, eg in format string attack like

printf (user input);

Erik Poll 10

Anti-pattern: ATRINGS

More generally, the use of strings in itself is already troublesome

* incl. String, string, char*, char[], StringBuilder, ...

« Strings are useful, because you use them to represent many things:
eg. hame, file name, email address, URL, shell command, bit of SQL, HTML,...

« This also make strings dangerous:

1. Strings are unstructured & unparsed data, and processing may
involve some interpretation

« [Ifyou have a shotgun parser, your code will use strings

2. The same string may be handled & interpreted in many
— possibly unexpected - ways

3. A string parameter in an API call can — and often does - hide a
very expressive & powerful language

Erik Poll 11

Remedies
to tackle forwarding flaws

Remedy: Parameterised queries

« The best-known & most robust way to tackle SQL injection is to use
parameterised queries (or stored procedures)

* reduces the expressive power of the interface to the back-end
« avoids unparsing in front-end & (hence) parsing in back-end

* Note: this replaces a generic API call that takes a single STRING as
argument |

g_ e

Erik Poll 13

JosJsed

Remedy: Types (1) to distinguish /anguages
« Instead of using strings for everything,

use different types to distinguish different kinds of data
Eg different types for HTML, URLs, file names, user names, paths, ...

« Advantages

« Types provide structured data

* No ambiguity about the intended use of data

@—{ \~C

RS

Erik Poll

Remedy: Types (2) to distinguish frust /evels

« Information flow types can be used to track the origins of data and/or

control destinations

* Ancient idea, going back to [Denning 1976]

 Eg untrusted user input vs compile-time constants

Y s [~

AA) E—

~

—

The two uses of types, to distinguish (1) languages or (2) trust levels,
are orthogonal and can be combined.

Erik Poll

15

Example: Trusted Types for DOM Manipulation

DOM-based XSS flaws are proving difficult to root out

« as attacks using script gadgets demonstrate
[Lekies et al., Code-Reuse Attacks for the Web: Breaking Cross-Site Scripting Mitigations via Script

Gadgets, CCS’17]

Trusted Types initiative [https:/igithub.com/WICG/trusted-types]
replaces string-based APIls with typed APIs

* using TrustedHtml, TrustedUrl, TrustedScriptUrl, TrustedJavaScript,...

« ‘safe’ APIs for back-ends that auto-escape untrusted inputs

[Sebastian Lekies’ talk at OWASP Benelux 2017: Don't trust the DOM]
[Christoph Kern, Securing the Tangled Web, CACM 2014]

Erik Poll 16

Beyond types: extending programming language

Wyvern programming language by Jonathan Aldrich et al.
allows domain-specific extensions, eg

let authorName : String = user_input
let webpage : HTML = ~
<html>
<body>
<hl>Search results:</hl>
<ul id="results">
{query_results(db, ~)
xx;f; utl 7 2 "authorName !}
</body></html>
where HTML and are ‘built-in’ types of the programming language
Added advantage over types: more convenient syntax

[D. Kurilova et al, Wyvern: Impacting Software Security via
Programming Language Design, PLATEAU 2014, ACM]

Erik Poll 17

Conclusions

« Forwarding flaws vs processing flaws is a useful taxonomy to analyse
input problems & LangSec solutions

* Don’tuse STRINGS

Do use types, to distinguish

1) different languages, and/or
2) different trust levels

Output escaping then becomes safe(r) & sane(r)

Or even extend the programming language for this

These do’s are (programming) language-based security
as much as (input) language-theoretic security

Are there more forwarding anti-patterns & remedies,
or more good examples of these?

Erik Poll 18

Thanks for your attention

CONsIDERED

- HARMFuL 4

Erik Poll

19

