
Retrofitting Security in input
parsing routines

Jayakrishna Menon, Christophe Hauser, Yan
Shoshitaishvili, Stephen Schwab

{jmenon, hauser, schwab}@isi.edu
yans@asu.edu

● Many programs are still
written in unsafe
languages like C/C++.

● Memory corruption
vulnerabilities remain
prominent.

● OS defenses (ASLR, DEP).

● Compiler-level defenses
(e.g., stack canaries).

● Code audit tools.

Modern defenses Vulnerabilities

parsers

● Directly exposed to user input.
● Many custom implementations in unsafe languages (C/C++).
● Over 170 vulnerabilities reported in various parsing

mechanisms since 1999.
● Varying semantics and the abundance of string

manipulations make their implementation error-prone.

Solution space

● Code audits.

● Refactoring/inserting
correct parsers.

● No source code?

● Parser libraries.

● Parser generators.

● Formal methods.

Design time
security

post-design
security

● Source code not always
available (legacy code,
uncooperative editors,
untrusted IoT devices).

● What you see is not what
you execute: compiler
bugs, compiler “backdoors”
e.g., XCodeGhost (linking
malicious code into
executables).

Binary-level approach

WYSINWYX

challenges

Scaling problem
Program analysis techniques
are difficult to automate in
a scalable and precise
manner.

● Precise.

● Unscalable.

● Scalable.

● Imprecise.

Static analysis Symbolic execution

Dynamic analysis

● Precise.

● Low coverage.

● Registers.

● Memory locations.

● Basic blocks.

● ...

● Types.

● Variable names.

● Functions.

● ...

Source code Binary

How to scale to real
world programs?

template-based approach
… to discover vulnerabilities based on templates
corresponding to common classes of security bugs.

… to retrofit security by patching programs at the
binary-level.

● Unconstrained input.
● Under-constrained input

size.
● Unchecked termination

condition.
● ...

● Focuses on overflows in
buffers allocated
statically on the stack.

● template-based:
categorize causes of
vulnerabilities into
three classes.

● Combines static analysis
and symbolic execution.

Initial approach classes/templates

Unconstrained
input.

Improper usage of functions that
do not check for sizes such as
strcpy, sprintf etc.

Example 1: CVE-2003-0390

int opt_atoi(char *s) {

 char buf[1024];

 char *fmt = "String [%s] is not valid";

 sprintf(buf, fmt, s);

}

Under-constrained
input size.

Improper validation of size field
in functions such as memcpy.

 Example 2: CVE-2015-3329

void phar_set_inode(phar_entry_info *entry) {

 char tmp[1024];

 memcpy(tmp, entry->phar->fname, entry->phar->fname_len);

}

Unchecked
termination
condition.

Performing operations on
(possibly) incorrectly terminated
strings.

2-step Analysis approach

CFG

DDG

Identify string
manipulation

functions.

Analyze backward
data-dependency.

Identify
destination

buffers (sinks).

Identify user
input.

SE} Dangerous
program paths. }}

Path
constraints.

(Memory corruption caused by unsafe buffer manipulation)

Static analysis Symbolic analysis

Analysis results

Static Analysis Symbolic
execution

Overall

False positive rate 6.6% 0% 0% *

False negative rate 40% 0% * 40%

Time 1-260s 1-400s 2-660s

2 new bugs found in the binary code of common opensource
projects and libraries (in a semi-automatic setting)

New bugs

Retrofitting security: binary
patching

Adding the missing
checks

● Remember: we focus on stack
buffers.

● On the identified program
paths, we constrain the user
input such that:

user_input_size <
stack_buffer_size

Adding the missing
checks

When the constraints are
violated, we crash the program.

This is equivalent to e.g.,
__sprintf_chk()

Patching the binary

Static reassembly problems:
breaking internal program
references.

Partial solution: inject
trampoline gadgets in padding
bytes between functions (up to 15
consecutive NOPs).

Inserting checks

int opt_atoi(char *s)

sprintf(buf, fmt, s);

int opt_atoi(char *s)

if(strlen(s)>1024)

exit() sprintf(buf, fmt, s);

More templates

New template
Memory allocation errors

… authentication errors.

… misuses of cryptographic APIs.

… information leakage.

12 new bugs found in the binary code of common opensource
programs and libraries (in a fully automated setting).

New bugs

discussion
Lightweight and scalable approach.

… but high rate of false negatives.

… limited patching capabilities.

Stumbling blocks

Data structure
recovery.

Pointer
aliasing.

Future work
● Improve data dependence tracking.
● Leverage static reassembly techniques.
● More vulnerability templates.
● Apply to large corpus of IoT firmware.

Key takeaways
- Templates per vulnerability class.
- Scalable, two-level approach based on a

combination of static analysis + symbolic
execution.

- High-precision: we can infer semantic-agnostic
patches for each class.

- New bugs.

?

