RETROFITTING SECURITY IN INPUT
PARSING ROUTINES

MODERN DEFENSES VULNERABILITIES

e 0S defenses (ASLR, DEP). ® Many programs are still
written in unsafe

e Compiler-level defenses languages like C/C++

(e.g., stack canaries).

e Memory corruption
vulnerabilities remain
prominent.

e Code audit tools.

PARSERS

e Directly exposed to user 1input.

e Many custom implementations in unsafe languages (C/C++).

e Over 170 vulnerabilities reported in various parsing
mechanisms since 1999.

e Varying semantics and the abundance of string
manipulations make their implementation error-prone.

SOLUTION SPACE

DESIGN TIME
SECURLTY

e Parser libraries.
e Parser generators.

e Formal methods.

POST-DESIGN
SECURLTY

e Code audits.

e Refactoring/inserting

correct parsers.

e NoO source code?

BINARY-LEVEL APPROACH

Source code not always
available (legacy code,
uncooperative editors,
untrusted IoT devices).

What you see is not what
you execute: compiler
bugs, compiler “backdoors”
e.g., XCodeGhost (linking
malicious code into
executables).

WYSINWYX

(RALLENGES

SCALING PROBLEM

Program analysis techniques
are difficult to automate 1in
a scalable and precise
manner.

STATIC ANALYSIS SYMBOLIC EXECUTION

e Scalable. e Precise.

e Imprecise. e Unscalable.

DYNAMIC ANALYSTS

® Precise.

e |ow coverage.

SOURCE CODE

Types.

Variable names.

Functions.

PINARY

Registers.
Memory locations.

Basic blocks.

HOW TO SCALE TO REAL
WORLD PROGRAMS!

TEMPLATE-BASED APPROACK

. to discover vulnerabilities based on templates
corresponding to common classes of security bugs.

. to retrofit security by patching programs at the
binary-level.

LNTTIAL APPROACH

e Focuses on overflows 1n
buffers allocated
statically on the stack.

e template-based:
categorize causes of
vulnerabilities into
three classes.

e Combines static analysis
and symbolic execution.

CLASSES/TEMPLATES

Unconstrained 1input.

e Under-constrained input

size.
Unchecked termination
condition.

UN(ONS.\-RAIN[D Improper usage of functions that

do not check for sizes such as
INPU.‘. strcpy, sprintf etc.

EXAMPLE 1: CVE-2003-0310
/

int opt_atoi(char *s) {
char buf[1024];
char *fmt = "String [%s] is not valid";

~

sprintf(buf, fmt, s);

UND[R‘(ONSTRAIN[D Improper validation of size field

in functions such as memcpy.

INPUT SLLE.

EXAMPLE 2 CVE-201)-33)5
/

void phar_set_inode(phar_entry_info *entry) {
char tmp[1024];

memcpy (tmp, entry->phar->fname, entry->phar->fname_len);

} \ /

UNCHECKED .
‘\-[RMINA‘HON (possibly? iicorrectly terminated

strings.

(ONDITION .

J-STEP ANALYSIS APPROACH

Static analysis

CEG Identify string Identify
manipulation destination
functions. buffers (sinks).
DDG

Dangerous

Identify user Analyze backward
input. data-dependency.

(MEMORY CORRUPTION CAUSED BY UNSAFE BUFFER MANIPULATION)

program paths.)

Symbolic analysis

Path
constraints.

ANALYSTS RESULTS

Static Analysis Symbolic Overall
execution
False positive rate | 6.6% 0% 0% *
False negative rate 40% 0% * 40%

Time 1-260s 1-400s 2-660s

NEW BUGS

2 new bugs found in the binary code of common opensource
projects and libraries (in a semi-automatic setting)

RETROFITTING SECURITY: BINARY
PATCRING

e Remember: we focus on stack

ADDING THE MISSING

e On the identified program
(]{[(KS paths, we constrain the user
input such that:

user_input_size <
stack_buffer_size

When the constraints are

ADDIN(‘} ‘-H[MISSING violated, we crash the program.

This is equivalent to e.g.
(H[(KS __sprintf_chk() ,

Static reassembly problems:
breaking internal program
references.

PATCHING THE BINARY

Partial solution: inject
trampoline gadgets 1in padding
bytes between functions (up to 15
consecutive NOPs).

[NSERTING CHECKS

int opt_atoi(char *s)
if(strlen(s)>1024)

sprintf(buf, fmt, s); .
[sprintf(buf, fmt, s); }

MORE TEMPLATES

NEW TEMPLATE

Memory allocation errors

. authentication errors.
. misuses of cryptographic APIs.

. information leakage.

NEW BUGS

12 new bugs found in the binary code of common opensource
programs and Llibraries (in a fully automated setting).

DISCUSSION

Lightweight and scalable approach.
.. but high rate of false negatives.

.. Limited patching capabilities.

Data structure
recovery.

STUMBLING BLOCKS

Pointer
aliasing.

tUTURE WORK

Improve data dependence tracking.
Leverage static reassembly techniques.
More vulnerability templates.

Apply to large corpus of IoT firmware.

KEY TAKEAWAYS

- Templates per vulnerability class.

- Scalable, two-level approach based on a
combination of static analysis + symbolic
execution.

— High-precision: we can infer semantic-agnostic
patches for each class.

- New bugs.

