
Proving un-exploitability of
parsers
An imaginary roadmap for unknown territories

Thomas Dullien / “Halvar Flake”
Google Project Zero

Introduction

● Wrote my first “exploit” in 1998

● Trained as a mathematician (cryptography, computational commutative
algebra); some background with abstract interpretation etc.

● Since 2009 or 2010 increasingly interested in fundamental questions -
“what is an exploit” ? - necessary to formalize “folklore”

● Work on “exotic” exploits (Rowhammer, JS Bytecode corruption etc.)

Introduction

● During sabbatical 2015/2016 and after my return to P0 I wrote a paper
about theoretical foundations of “exploitability” and “weird machines”

● “Weird machines, exploitability, and provable unexploitability” [Paper][Talk]

● Key results of the paper:
○ Formalisation of “what is an exploit”
○ Formalisation of intended machines & weird machines
○ Insight that exploitability is a mostly orthogonal concept to correctness
○ Non-exploitability can be proven in some extremely restricted cases

https://ieeexplore.ieee.org/document/8226852/
https://vimeo.com/252868605

What comes next?

● Results in the paper are quite “weak”

● 60%+ of the paper is just introducing concepts, clarifying definitions, and
“learning to walk” with those definitions

● Now that we have the machinery, and have made the first two wobbly
steps, where do we want to go?

This talk

1. Recap of the key concepts from the paper

2. What were the important tricks that helped us prove non-exploitability in
the restricted case?

3. What extra scaffolding would we need if we wanted to prove
non-exploitability of something more complex - like a parser?

This talk

1. Recap of the key concepts from the paper

2. What were the important tricks that helped us prove non-exploitability in
the restricted case?

3. What extra scaffolding would we need if we wanted to prove
non-exploitability of something more complex - like a parser?

Highly speculative and likely incomplete and wrong.

Recap: Key concepts from the paper

Intended finite
state machine
(or transducer)

IFSM

Software
PROG as

emulator to
simulate IFSM
on real CPU

Concretization
mapping: IFSM
state to set of
possible CPU

states that
represent it.

Abstraction
mapping:

Partial mapping
from CPU

states to valid
IFSM states.

Sane,
transitory, and
weird states.

Security
Properties as
assertion over

results of a
game between

...

… two dueling
transducers.

Weird machine
programming

Intended Finite-State Machine (or transducer)

What I want What I have

Recap: Key concepts from the paper

Intended finite
state machine
(or transducer)

IFSM

Software
PROG as

emulator to
simulate IFSM
on real CPU

Concretization
mapping: IFSM
state to set of
possible CPU

states that
represent it.

Abstraction
mapping:

Partial mapping
from CPU

states to valid
IFSM states.

Sane,
transitory, and
weird states.

Security
Properties as
assertion over

results of a
game between

...

… two dueling
transducers.

Weird machine
programming

Instantiation mapping

What I need What I have

Abstraction

What I need What I have

partial

Recap: Key concepts from the paper

Intended finite
state machine
(or transducer)

IFSM

Software
PROG as

emulator to
simulate IFSM
on real CPU

Concretization
mapping: IFSM
state to set of
possible CPU

states that
represent it.

Abstraction
mapping:

Partial mapping
from CPU

states to valid
IFSM states.

Sane,
transitory, and
weird states.

Security
Properties as
assertion over

results of a
game between

...

… two dueling
transducers.

Weird machine
programming

Sane, weird, and transitory states

CPU state space est omnis divisa
in partes tres:

Recap: Key concepts from the paper

Intended finite
state machine
(or transducer)

IFSM

Software
PROG as

emulator to
simulate IFSM
on real CPU

Concretization
mapping: IFSM
state to set of
possible CPU

states that
represent it.

Abstraction
mapping:

Partial mapping
from CPU

states to valid
IFSM states.

Sane,
transitory, and
weird states.

Security
Properties as
assertion over

results of a
game between

...

… two dueling
transducers.

Weird machine
programming

Dueling transducers

IFSM
Output of exploit is sent
to the IFSM to interact

with it.

Output of the IFSM is sent to the
exploit.

Security properties

● Define the game between the dueling transducers.

● Decide what you do not want to happen.

● Phrase this as statement about the communication between the
transducers and the possible final states of the IFSM

● This “game structure” is adopted from security proofs in Cryptography

Recap: Key concepts from the paper

Intended finite
state machine
(or transducer)

IFSM

Software
PROG as

emulator to
simulate IFSM
on real CPU

Concretization
mapping: IFSM
state to set of
possible CPU

states that
represent it.

Abstraction
mapping:

Partial mapping
from CPU

states to valid
IFSM states.

Sane,
transitory, and
weird states.

Security
Properties as
assertion over

results of a
game between

...

… two dueling
transducers.

Weird machine
programming

Classical view of programming

Classical view of programming

Attacker view of programming

Attacker view of programming

There is now a new computational device: The weird machine.

● Transforms states in via emulated transitions designed to transform
IFSM states.

● Takes the input stream of the IFSM as instruction stream
● are terminating states for the weird machine (because the IFSM

resumes execution)

Recap: Key concepts from the paper

Intended finite
state machine
(or transducer)

IFSM

Software
PROG as

emulator to
simulate IFSM
on real CPU

Concretization
mapping: IFSM
state to set of
possible CPU

states that
represent it.

Abstraction
mapping:

Partial mapping
from CPU

states to valid
IFSM states.

Sane,
transitory, and
weird states.

Security
Properties as
assertion over

results of a
game between

...

… two dueling
transducers.

Weird machine
programming

Example in the paper: Secret-keeping machine

● Simple IFSM that keeps up to 5000 pairs of (password, secret).

● Attackers should not be able to retrieve a secret for which they do not
know the password faster than guessing.

● Attacker model: Attacker is allowed to corrupt one chosen bit, exactly
once.

● Two implementations: One linked-list based (exploitable), one based on
flat arrays that are linearly traversed that can be proven “unexploitable” by
that attacker.

Game in the paper:

● Game flow:
a. Attacker chooses a distribution over finite-state transducers that have as input alphabet the

output alphabet of the IFSM, and that have as output alphabet the input alphabet of the IFSM
b. Defender draws p, s uniformly at random from
c. Attacker draws a finite-state transducer from his distribution and connects it to the

IFSM. The transducer is allowed to interact with the IFSM for steps
d. The defender sends p,s to the IFSM
e. The attacker is allowed to have his transducer interact with the IFSM for steps. At

any step, but only once, he is allowed to flip an attacker-chosen bit in memory (not in
registers).

Idea underlying the proof of non-exploitability

● Begin by showing (or assuming) that attacker without bit-flip cannot
violate security properties (get secret much faster than guessing)

● Assume attacker with bit-flip can violate security properties (e.g. get secret
much faster than guessing)

● Demonstrate that anything that can be achieved by the attacker with
bit-flips could also be achieved by an attacker without bitflips with just a
small overhead.

● Contradiction. This shows that an attacker with bit flips cannot get a
significant advantage over an attacker without bit flip.

Proof sketch

● Cleverly summarize possible states of CPU/PROG into a few
understandable equivalence classes.

● Show that attacker memory corruption can only lead to a few different
equivalence classes of weird or sane states.

● Show that all sane -> sane transitions attacker can cause can be emulated
by the weaker attacker.

● Show that all weird -> weird -> weird … transitions reach only a controlled
number of equivalent states; show that any output could also be emulated
by the weaker attacker.

Paper result ...

● For a very simple and limited IFSM ...

● … and a restricted, but also powerful memory-corrupting attacker ...

● … it is possible to prove unexploitability

What next?
… Sergey asked me ...

… “can you talk about how one
could prove non-exploitability of
parsers?”

Like asking someone who travelled
twenty miles by feet “what is the
best way to walk to India from
here?”

Here be dragons.

Non-exploitable parsers

● A parser is a transducer that emits a program state at the end

● Any sane input language should lead to a formally-describable IFSM

● Safe compilation from IFSM-description to emulated IFSM is necessary

● This can, if done properly, yield a correct parser.

Non-exploitable parsers

● Exploitability is mostly orthogonal to correctness

● A correct program can be exploitable if an attacker has the means to enter
a weird state (hardware fault etc.)

● An incorrect program gives the attacker means to enter weird states

● What would we need to build a compiler that can compile a spec of an
IFSM to a non-exploitable implementation PROG ?

Ingredients needed

● Spec of the IFSM, specification of CPU

● Security Game

● Security Properties

● Attacker model for the weak and strong attacker

Security properties for parsers

● Parsers map input sequences to program states

● A good security property for parsers could be:

No attacker should be able to get the parser to emit an invalid state.

Recipe for proving non-exploitability ...

● Show that PROG (and/or IFSM) preserves the security property against the
weak attacker. This should be comparatively “easy”.

● Show that all sane-to-sane transitions the the strong attacker can cause
are either intended sane-to-sane transitions, or can be emulated easily by a
weak attacker.

● Show that the strong attacker can only cause weird-weird transitions to a
small number of equivalence classes of weird states, cannot produce
output from the weird states, and when reverting back to a sane state only
achieves a transition achievable by a weak attacker.

What would the compiler need to do?

The compiler will need to do the heavy lifting of ensuring that only a few,
well-specified equivalence classes of states are reachable.

Controlling sane transitions

● Controlling sane transitions: Ensure that the attacker can only achieve
benign sane-sane transitions. Can probably be done with clever design &
layout of data structures in memory.

● Will be very dependent on precise semantics of CPU, and precise
capabilities of the attacker

Controlling weird transitions

● Ensure that any program state that can be emitted using transitions
through weird states can be emitted without those transitions.

● Easiest solution if computational cost is not an issue: Build code that can
check whether CPU state is sane, run it before consuming a byte of input.

● Memory tagging is a much weaker, probabilistic variant of this.

● Sanity checks on data structure internals before operating on this are also
weak, probabilistic variants of this.

Other possible avenues

● Validating CPU state is sane may be too expensive?

● Commonly done in some high-security embedded circuits (failure on
invalid combination of state bits)

● Is doing this cheaply in software possible?

● Is there another way - perhaps “trapping” the attacker in a few harmless
equivalence classes of weird states?

Closing words

● We are only slowly coming to grips with what “exploitation” means
● Computers are big recurrence equations that tend to exhibit deterministic

chaos
● Security implies making sure that only few points in the state space are

reachable, and that those points are well-understood
● Please take my speculation on “the way forward” with a rather huge grain

of salt. Sergey Bratus made me do it.

Questions?

