
From Verified Parsers and
Serializers to Format-Aware Fuzzers

Benjamin Delaware
Purdue Computer Science

• Numerous developments of high-assurance software
in proof assistants in the past five years:

• CompCert C compiler
• seL4 microkernel
• FSCQ file system

• Assurance comes from formal guarantees* provided
by proof assistant:

* w.r.t Trusted Base

Formal Verification

Im
pl

em
en

ta
tio

n

OK!

⊧ Bi
na

ry

Sp
ec

ifi
ca

tio
n

compiler

Libraries

OS

Hardware

•For networked systems, deserialization is important1
• If these are in your TCB, bugs will break the assurance case!

•Enter Narcissus:
• User-extensible framework for synthesizing encoders and

decoders from format specifications, with machine-checked
correctness proofs

Narcissus

OK*! 00101

De
se

ria
liz

er

[1] An Empirical Study on the Correctness of Formally Verified Distributed Systems. Pedro Fonseca, Kaiyuan Zhang, Xi Wang, and Arvind Krishnamurthy.

Na
rc

is
su

s

Relational Format
Specification

Serializer

Deserializer

OK!

• Probably unreasonable to incorporate synthesized decoders
and decoders into every existing codebase.

• Synthesized code is OCaml (working on verified C)
• Assumes clean interface between communication and

processing code
• How to leverage work to secure legacy code?

All Done?

• Formats can contain implicit dependencies
• These decoders are provably correct recognizers for the entire

input format.

• Verification exposes latent dependencies in formats.
• Hypothesis: these dependencies can be leveraged to generate

format-aware fuzzers.

From Verification to Fuzzing

Deserializer
“hello”

04 A6 10 B2 16 00 46
⨉

05 A6 10 B2 16 00 46

•Embedding Formats in Narcissus
•Synthesizing Correct-by-Construction encoders and decoders
•Leveraging these to generate format-aware fuzzers

Today’s Talk

• First challenge: specifying valid inputs?
• Established format specification languages:

• Interface Generators: ASN.1, Protobuffs, Apache Avro
• Format Specification Languages: binpac, PADS

• Internet servers were the original
verification target, so we needed a rich
enough specification language to capture
legacy formats.

• Solution (?): functional description
format(s) = |s| ++ 166 ++ s

Specifying Formats in Narcissus

05 A6 10 B2 16 00 46

04 B3 01 05 B2 02

03 A6 01 B4 32

05 A6 10 B2 16 00

04 00 10 B2 16 00

• Many formats do not have a single canonical encoding
of a source value
• i.e. DNS packet compression

• Solution: map source values to a (possibly empty) set
of target representations:

format(s) = |s| ⧺ {n | n ≤ 217} ⧺ s

• These relations are represented as propositions in
Coq’s logic, so users can freely write their own custom
format specifications

• Constraints on source values can be represented with
set intersection:

format'(s) = format(s) ∩ {(s,t) | |s| ≤ 217 }

Relational Specifications

05 A6 10 B2 16 00

04 D0 10 B2 16 00

03 A6 01 B4 32

03 A3 01 B4 32

• Narcissus includes a library of
common formats

•Base formats for single data types
• Combinators for composing formats

Simplifying Specifications

Component Library

Format LoC LoP Higher-order
Sequencing (ThenC) 7 164 Y
Termination (DoneC) 1 28 Y

Conditionals (IfC) 25 204 Y
Booleans 4 24 N

Fixed-length Words 65 130 N
Unspecified Field 30 60 N

List with Encoded Length 40 90 N
String with Encoded Length 31 47 N

Option Type 5 79 N
Ascii Character 10 53 N

Enumerated Types 35 82 N
Variant Types 43 87 N

Domain Names 86 671 N
IP Checksums 15 1064 Y

Figure 10. Formats included in NARCISSUS with lines of
code (LoC) and lines of proof (LoP).

4. Deriving Correct-By-Construction

Decoders

NARCISSUS frames the decoder-synthesis problem as a user-
guided search for both a decoder function for the encoded
type and a proof that it is correct with respect to a specified
format. We define a type alias, CorrectDecoderFor, previously
seen in Figure 2, that packages these two terms together as
a dependent pair. CorrectDecoderFor is parameterized over the
state predicate StateOK, the data predicate DataOK, and the
format specification FormatSpec:
Definition CorrectDecoderFor StateOK DataOK FormatSpec :=

⌃ decode. StateOK, DataOK ` FormatSpec decode.

NARCISSUS includes a tactic synthesize decoder for automat-
ically finding inhabitants of CorrectDecoderFor. The behavior
of this tactic is broken into three phases:

Format Normalization This initial phase unfolds the iden-
tifiers of the parameters to CorrectDecoderFor, uses the
monad laws to normalize the format specification, sim-
plifies the resulting term, and caches any string constants
via an OCaml plugin to minimize the size of intermediate
proof terms in order to speed up the rest of the derivation.

Syntax-Directed Search The main body of the tactic searches
for an initial decoder implementation by repeatedly ap-
plying lemmas. This search consists of a series
of rules, triggered on the syntax of the current format in
the goal. In addition to specifying which lemma to apply,
these rules also attempt to discharge any hypotheses deal-
ing with data invariants via a hint database. The rule for
COMPOSECORRECT, for example, tries to automatically
show that the data invariant for the compound decoder
entails the data invariant used by the first decoder by using
this database.
The most interesting of these rules is the one that tries to
finish a derivation by applying DONECORRECT. This rule

produces two proof obligations: showing that the original
data can be completely reconstituted using previously
parsed data, and finding a decision procedure for the
current data predicate. The first obligation takes the form
of an equality between the original data a and some
unknown existential variable: a =?a. The finishing tactic
tries to solve this goal by using the equations built up in
the data predicate during the correctness proof to rewrite
the original encoded datatype into a term built entirely
from parsed data, before unifying the resulting term with
the ?a. Since a is not in the scope of the ?a, this latter step
only succeeds when the rewritten term only depends on
parsed data. The second obligation also uses an existential
variable, this time to represent the decision procedure
for the data predicate: PAa0 $?deca0 = true. The tactic
tries to discharge this goal by composing known decision
procedures for predicates in PA and simplifying away any
tautologies, including any predicates built up during the
correctness proof.

Decoder Optimization The final phase of synthesize decoder

tries to further simplify the synthesized decoder by rewrit-
ing with the monad laws and removing any redundant
tests in the decision procedure synthesized in the previous
step.

5. Extending the Framework

An extension to NARCISSUS consists of four pieces: a for-
mat, a decoder function, a proof of a rule relating
the two, and automation for incorporating this rule into
synthesize decoder. As an example, consider the format of
the Internet Protocol (IP) checksum used in the IP headers,
TCP packets, and UDP packets featured in our case studies.
Figure 11 presents the first three pieces of this extension.
Note that encode IPChecksum is a higher-order format com-
binator in the spirit of ThenC; the key difference is that it
uses the bytestrings produced by the two format parame-
ters to build the IP checksum (the one’s complement of the
bytestrings interpreted as lists of bytes), which it then inserts
between the two encoded bytestrings in the output bytestring.
decode IPChecksum first validates the checksum before decod-
ing the rest of the string; the rule for this decoder
guarantees this test will always succeed for uncorrupted data,
and can safely avoid parsing the rest of the string otherwise.

The correctness rule for decode IPChecksum, IPCORRECT,
closely mirrors COMPOSECORRECT, adding additional as-
sumptions that the bytestrings produced by each subformat
have constant length and are properly byte-aligned; these as-
sumptions are needed to prove the validity of the initial check-
sum test. Integrating this combinator into synthesize decoder

requires adding a new rule to the main loop of the tactic,
keyed on the encode IPChecksum combinator. After applying
IPCORRECT, this rule attempts to discharge the assumptions
by rewriting with a database of facts about the lengths of

Deriving Correct-By-Construction Decoders and Encoders from Binary Formats 9 2016/11/16

(e)
(⧺)

N

• Narcissus includes a library of common formats
•Base formats for single data types
• Combinators for composing formats

Definition IPv4_Packet_Format (ip4 : IPv4_Packet) :=
 format_nat 4 4 ⧺ format_nat 4 (5 + |ip4.Options|) ⧺ {n : char | true}

 ⧺ format_word ip4.TotalLength
 ⧺ format_word ip4.ID
 ⧺ {b : bool | true} ⧺ format_bool ip4.DF ⧺ format_bool ip4.MF ⧺ format_word ip4.FragmentOffset

 ⧺ format_word ip4.TTL ⧺ format_enum ProtocolCodes ip4.Protocol
 ⧺ IPChecksum_Valid
 ⧺ format_word ip4.SourceAddress

 ⧺ format_word ip4.DestAddress
 ⧺ format_list format_word ip4.Options ⧺ e.

Simplifying Specifications

• A correct encoder is a function wholly contained in the relation
defined by the format:

EncoderOK(Format, e) ≡ ∀s.Format ∋ (s, e(s))

Specifying Encoders and Decoders

• A correct decoder maps values in the image of the format back
to the original source value, and signals an error for other
values

DecoderOK(Format, d) ≡ ∀t.Format ∋ (d(t), t)
 Λ d(t) = ⊥ ➝ ∀v. Format ∌ (v, t)

Specifying Encoders and Decoders

• Can phrase construction of a correct encoder as a user directed
search for a function satisfying EncoderOK

• Such searches are the bread and butter of theorem provers

• Key Observation: formats are inherently compositional, so this
process can be decomposed into a series of small steps

• These proofs can be automated

Deriving Encoders

format'(s) := {|s|} ⧺ {n | n ≤ 217} ⧺ {s} ∩ {(s,t) | |s| ≤ 232}

{|s|} ⧺ {0} ⧺ {s} ∩ ∩ {(s,t) | |s| ≤ 232}

{|s| ++ 0} ⧺ {s} ∩ {(s,t) | |s| ≤ 232}

{|s| ++ 0 ++ s} ∩ {(s,t) | |s| ≤ 232}

⊇

O

O

O

⊇
⊇

if |s| ≤ 232 then |s| ++ 0 ++ s
O

∋

• Can do the same for decoders, but correctness of subdecoders
now depends on other parts of the encoded value:

• DNS— compressed domains are pointers
• DNS— resource record tag determines how payload is parsed
• SDN— versions effects available options
• ZIP— position of start of central directory depends on EOCD

∀n. DecoderOK({s} ∩ {(s,t) | |s| = n}, decodeList n)
where decode 0 [] = Some []
 decode n (c : t) = decode (n - 1) t >>= \l -> c : l
 decode _ _ = None

Deriving Decoders

05 A6 10 B2 16 00 46

• Key idea: keep track of dependence data when decomposing
proof:

 DecoderOK(Format1', d1)
Λ image(Format1') = image(Format1)
Λ DecoderOK(Format2 ∩ {(s,t) | ∃t'. (v, t') ∈ Format1'
 Λ (s, t') ∈ Format1},
 d2(v))
 ➝ DecoderOK(Format1 ⧺ Format2, d1 >>= d2)

Deriving Decoders2

• Key idea: keep track of dependence data when decomposing
proof:

Deriving Decoders2

DecoderOK({n | n ≤ 217} ⧺ {s} ∩ {(s,t) | |s| ≤ 232} ∩ {v = |s|}, ? v)

DecoderOK({|s|} ⧺ {n | n ≤ 217} ⧺ {s} ∩ {(s,t) | |s| ≤ 232}, ?)

DecoderOK({s} ∩ {(s,t) | |s| ≤ 232} ∩ {v = s} ∩ {n ≤ 217}, ? v n)

DecoderOK({(s,t) | |s| ≤ 232} ∩ {v = |s|} ∩ {n ≤ 217} ∩ {l = s}, ? v n l)

DecoderOK({(s,t) | |s| ≤ 232 Λ v = |s| s Λ ≤ 217 Λ l = s}, l)

➝

➝

➝

➝

• Key idea: keep track of dependence data when decomposing
proof:

Deriving Decoders2

DecoderOK({|s|} ⧺ {n | n ≤ 217} ⧺ {s} ∩ {(s,t) | |s| ≤ 232},
 v <- decodeChar;
 n <- decodeChar;
 l <- decodeList v;
 if n <= 217 then return l else None)

Narcissus in Action

Definition encode IPChecksum encode1 encode2 �E :=
(s, �E ’) encode1 �E ;
(s’, �E ’) encode2 �E ;
c { c | onesComplement (S2CharList (s ++ c ++ s’))

= 1111 1111 1111 1111 };
return (s ++ c ++ s’, �E ’)

Definition decode IPChecksum decode1 decode2 s �D :=
if onesComplement (S2CharList s) = 1111 1111 1111 1111
then (a’, s’, �D ’) decode1 s �D ;

(, s’, �D ’) decodeW s’ �D ’;
decode2 a’ s’ �D ’

else None

(8b s �E �0
E . PB b ! (s,�0

E) 2 encode1 b �E ! |s| = n) n mod 8 = 0 (8a s �E �0
E . PA a ! (s0,�0

E) 2 encode2 a �E ! |s0| = n0) n0 mod 8 = 0
Q, PB ` encode2 decode2 8a. PA a ! PB (⇡B a) 8b. PB b ! Q, �a. PA a ^ ⇡B a = b ` encode1 decode1 b

Q, PA ` encode IPChecksum (encode1(⇡Ba)) (encode2 a) decode IPChecksum decode1 decode2
(IPCORRECT)

Figure 11. Binary format, decoder, and correctness rule for IP Checksums.

Definition encode IPv4 Packet Spec (ip4 : IPv4 Packet) :=
encode IPChecksum
(encodeW (natToWord 4 4)
ThenC encodeN 4 (IPv4 Packet Header Len ip4)
ThenC encode unused W 8
ThenC encodeW ip4!TotalLength
ThenC encodeW ip4!ID
ThenC encodeW 1
ThenC encodeW ip4!DF
ThenC encodeW ip4!MF
ThenC encodeW ip4!FragmentO↵set
ThenC encodeW ip4!TTL
ThenC encode enum ProtocolTypeCodes ip4!Protocol
DoneC)

(encodeW ip4!SourceAddress
ThenC encodeW ip4!DestAddress
ThenC encode List encodeW ip4!Options
DoneC).

Figure 12. Format for IP version 4, utilizing the IP Check-
sum format.

encoded datatypes and the modulus operator, relying on the
body of the main loop to synthesize decoders for the sub-
formats. Figure 12 presents an example of the checksum
combinator being used in the format for the IP headers.

6. Evaluation

To evaluate the expressiveness of NARCISSUS, we imple-
mented parsers for the set of network stack protocols shown
in Figure 13. We note that the specifications of these for-
mats are relatively short, consisting of on average roughly
180 lines of code. The specifications for DNS, IP, UDP, and
TCP packets require adding the additional combinators to
the framework noted in Figure 10 but do not require modi-
fications to the core set of definitions. The source code for
these parsers is included in the accompanying supplementary
material.

The decoders that our framework produces are reasonably
efficient and sufficiently full-featured to be used as a drop-in
replacements for all parsing components of a typical TCP/IP
stack. We support this claim by extracting our decoders

Protocol LoC Interesting Features
Ethernet 150 Multiple format versions

ARP 41
IP 141 IP Checksum; underspecified fields

UDP 115 IP Checksum with pseudoheader
TCP 181 IP Checksum with pseudoheader; under-

specified fields
DNS 474 DNS compression; variant types

Figure 13. Formats included in case studies, with lines of
code and interesting features highlighted.

to OCaml and integrating the resulting code into the pure-
OCaml TCP/IP stack of MirageOS.

MirageOS [12] is a “library operating system that con-

structs unikernels for secure, high-performance network ap-

plications”: a collection of OCaml libraries that can be as-
sembled into a stand-alone kernel running on top of the Xen
hypervisor. Security is a core feature of MirageOS, making it
a natural target to integrate our decoders into. Concretely, this
entails patching the mirage-tcpip

3 library to replace its
packet deserializers by our own verified decoders and evaluat-
ing the performance and functionality of the resulting library.
This allowed us to benchmark a realistic network application,
the mirage.io website (mirage-www4), off a networking
stack enhanced with verified decoders. This shows that the
overhead of using our decoders in real-life applications is
very small.

By themselves, our decoders are about fifty times slower
than Mirage’s built-in decoders. The comparison is not en-
tirely fair, however: we do significantly more validation (in-
cluding checksum computations that require re-encoding a
pseudoheader after decoding a TCP or UDP packet, where
Mirage simply reads a few fields from an in-memory buffer),
we rely on intermediate structures to ease integration with
Mirage, and some parts of our framework are simply not
heavily optimized (for example, our decoders fetch data bit-

3 https://github.com/mirage/mirage-tcpip
4 https://github.com/mirage/mirage-www

Deriving Correct-By-Construction Decoders and Encoders from Binary Formats 10 2016/11/16

Derived Decoders

• MirageOS is a library operating
system for secure, high-
performance network applications
written in OCaml

• Replaced network stack of
MirageOS with extracted OCaml
implementations of synthesized
decoders.

• Found one problem in the test suite.

• But, probably unreasonable to incorporate synthesized decoders and
decoders into every existing codebase.

• How can we leverage this to secure legacy systems?

• The final decoder synthesis step contains the accumulated
dependencies embedded in the format:

DecoderOK({(s,t) | |s| ≤ 232 Λ n ≤ 217 Λ v = |s| Λ l = s}, ?)

• invariants on the original input data
• invariants on the shape of the target values
• dependencies between bytes of the target values

• Idea: violating any one of these these dependencies yields an
input not included in the format

• Can we selectively break these dependencies to “fuzz” the
format in a smart way?

• Generate predicates for behavioral property testing?

Towards Format-Aware Fuzzers

• We don’t need to formalize the full format to get useful fuzzers:
• Only specifying certain fields tests dependencies between

these fields
• Rest of the target value is “don’t care” bits:

Definition IPv4_Packet_Format (ip4 : IPv4_Packet) :=
 format_nat 4 4 ⧺ format_nat 4 (5 + |ip4.Options|)
 ⧺ {n : char | true}
 ⧺ {n : 16 words | true}
 ⧺ format_list format_word ip4.Options ⧺ e.

• Gradually specify complex formats, hitting low-hanging bits
first

Gradual Fuzzing

• Today’s talk:
• Embedding Formats in Narcissus
• Synthesizing Correct-by-Construction encoders and decoders
• Leveraging these to generate format-aware fuzzers

Thoughts?

Conclusion

• Today’s talk:
• Embedding Formats in Narcissus
• Synthesizing Correct-by-Construction encoders and decoders
• Leveraging these to generate format-aware fuzzers

• Next Steps:
• Evaluation?
• Thoughts?

Conclusion

• Today’s talk:
• Embedding Formats in Narcissus
• Synthesizing Correct-by-Construction encoders and decoders
• Leveraging these to generate format-aware fuzzers

• Next Steps:
• Evaluation?
• Thoughts?

Conclusion

Computers are Multiplying

Hi!
Hi!

Hi!Hi?

00101

Encod
e

Decode

• Relationship between encoded + decoded data important
• Bugs lead to miscommunication

Communication is Multiplying

55mph

• Decoders present attack surface for malicious packets
• NTSB will likely mandate V2V communication within the next decade

Communication is Multiplying

55mph

• Decoders present attack surface for malicious packets
• NTSB will likely mandate V2V communication within the next decade

Why Worry?

Since 2013:

And Many More!

• Interface Generators:
•ASN.1, Protobuffs, Apache Avro
•Data format defined by system

•Format Specification Languages:
•binpac, PADS, Packet Types
•New formats still require modifying code generator

•User-Extensible Systems:
•Nail
•No formal guarantees

Established Solutions

•Narcissus:
•Framework for synthesizing encoders and
decoders from formats

•User extensible
•Correct-by-Construction

•Generating performant code
• Integration into high-assurance systems

Today’s Talk

V

Encode

Specifying Formats

gmail.google.com

• Mapping is not one-to-one: compression, unspecified fields
• Key Idea: specify set of valid encodings for value as a binary relation
• Encoder always maps into valid set

000100111100

11010001
with compression

no compression

Data
ByteString

http://gmail.google.com

pick

{a | P a}
return

ret v

x

bind

c;

f x

Specifying Formats
Key Idea: Represent formats as functional
programs in the nondeterminism monad.

Computations
Key Idea: Represent formats as functional
programs in the nondeterminism monad.

Packet := ⟨ID :: string,
 readings :: list word⟩

SimpleFormat (p : Packet) :=
 b1 ← formatNat |p!readings|;
 b2 ← formatString p!ID;
 b3 ← {w : word | w < 32};
 b4 ← formatList encodeWord p!readings;
 ret (b1⧺b2⧺b3⧺b4)

 0 1 2 3 4 5 6 7 8
 +--+--+--+--+--+--+--+--+--+
 | NUMREADINGS |
 +--+--+--+--+--+--+--+--+--|
 | |
 / ID /
 | |
 +--+--+--+--+--+--+--+--+--+
 | CLASS |0 |0 |0 |
 +--+--+--+--+--+--+--+--+--+
 | |
 / READINGS /
 | |
 +--+--+--+--+--+--+--+--+--+

Specifying Correct Encoders

A correct encoder is a function wholly contained
in the relation defined by the format.

SimpleFormat(p)

p

SimpleEncoder(p)∀p.

∈

Deriving Correct Encoders

The construction of a correct encoder
can be posed as a user-guided search
in a proof assistant.

⊇⊇ ⊇

}format }

optimization
script

OK! OK! OK!

• Preorder

a ⊇ c
a ⊇ b b ⊇ c

TRANS⊇ a ⊇ a REFL⊇

• Respected by sequencing

r ← a; f(r) ⊇ r ← b; f(r)
a ⊇ b

SEQ1⊇

r ← a; f(r) ⊇ r ← a; fˈ(r)
∀r, f(r) ⊇ f’(r)

SEQ2⊇

Properties of Refinement

Deriving Correct Encoders

SimpleFormat (p : Packet) :=
 b1 ← formatNat |p!readings|;
 b2 ← formatString p!ID;
 b3 ← {w : word | w < 32};
 b4 ← formatList encodeWord p!readings;
 ret (b1⧺b2⧺b3⧺b4)

SimpleFormat (p : Packet) :=
 b1 ← encodeNat |p!readings|;
 b2 ← formatString p!ID;
 b3 ← {w : word | w < 32};
 b4 ← formatList encodeWord p!readings;
 ret (b1⧺b2⧺b3⧺b4)

⊇

rewrite
formatNatOK!

Deriving Correct Encoders
SimpleFormat (p : Packet) :=
 b1 ← encodeNat |p!readings|;
 b2 ← formatString p!ID;
 b3 ← {w : word | w < 32};
 b4 ← formatList encodeWord p!readings;
 ret (b1⧺b2⧺b3⧺b4)

⊇

rewrite
formatStrOK!

SimpleFormat (p : Packet) :=
 b1 ← encodeNat |p!readings|;
 b2 ← encodeString p!ID;
 b3 ← {w : word | w < 32};
 b4 ← formatList encodeWord p!readings;
 ret (b1⧺b2⧺b3⧺b4)

⊇

Deriving Correct Encoders

⊇

rewrite
MyRule!

SimpleFormat (p : Packet) :=
 b1 ← encodeNat |p!readings|;
 b2 ← encodeString p!ID;
 b3 ← {w : word | w < 32};
 b4 ← formatList encodeWord p!readings;
 ret (b1⧺b2⧺b3⧺b4)

SimpleFormat (p : Packet) :=
 b1 ← encodeNat |p!readings|;
 b2 ← encodeString p!ID;
 b3 ← ret 0;
 b4 ← formatList encodeWord p!readings;
 ret (b1⧺b2⧺b3⧺b4)

⊇

Deriving Correct Encoders

⊇

finish!
SimpleFormat (p : Packet) :=
 b1 ← encodeNat |p!readings|;
 b2 ← encodeString p!ID;
 b3 ← ret 0;
 b4 ← formatList encodeWord p!readings;
 ret (b1⧺b2⧺b3⧺b4)

⊇
∈

SimpleEncoder (p : Packet) :=
encodeNat |p!readings| ⧺ encodeString p!ID ⧺ 0
⧺ encodeList encodeWord p!readings

• Users can safely add their own formats and rewrite rules
• Rewrites can be packaged together into single optimization tactic

V

Encode

Specifying Correct Decoders

gmail.google.com

000100111100

11010001
with compression

no compression

Data
ByteString

Decode

Valid-1 b ≜ { p | b ∈ Valid p } ⋀ ¬∃ p. b ∈ Valid p → p = ⊥⋀ P pP ⋀ P p

http://gmail.google.com

Deriving Correct Decoders

The construction of a correct decoder
can also be posed as a user-guided
search in a proof assistant.

Component LibraryformatNat-1 b 𝕋 ∋ decodeNat(b)

formatString-1(b) 𝕋 ∋ decodeString(b)

formatList-1 formatA b Q ∋ decodeList decodeA(b, n)
Q(l)→|l| = nformatA-1 b PA ∋ decodeA(b) Q(l) → ∀a∈l. PA(a)

{Invariant on List Elements Know Length{

Deriving Correct Decoders

The construction of a correct decoder
can also be posed as a user-guided
search in a proof assistant.

Component Library

formatA; formatB -1 b Q ∋ (bˈ,a) ← decodeA b PA;

 decodeB (a,bˈ) Q

formatA-1 b PA ∋ decodeA(b) Q(ab) → PA(π ab)formatA-1 b PA ∋ decodeA(b)

∀a. PA(a)→ formatB-1 b Q ∋ decodeB(a, b)

ret []-1 b Q ∋ Some a

∀aˈ. Q(aˈ)→ aˈ=a

Deriving Correct Decoders

SimpleDecoder (b : ByteString) :=
SimpleFormat-1 b 𝕋

SimpleDecoder (b : ByteString) :=
 (n, b) ← decodeNat(b); ???

⊇

rewrite
DecodeNatOK!

SimpleDecoder (b : ByteString) :=
 (n, b) ← decodeNat(b);
 (s, b) ← decodeString(b); ???

⊇

rewrite
DecodeStrOK!

rewrite
MyDecoder!

Deriving Correct Decoders

SimpleDecoder (b : ByteString) :=
 (n, b) ← decodeNat(b);
 (s, b) ← decodeString(b);
 (nˈ, b) ← decodeNat(b);
 if (nˈ < 32) then
 (rs, b) ← decodeList(b, n);
 return ⟨ID :: s, readings :: r s ⟩
else Error

⊇

SimpleDecoder (b : ByteString) :=
 (n, b) ← decodeNat(b);
 (s, b) ← decodeString(b); ???

⊇

Parsing DNS Packets
• Synthesized decoder for DNS Packets (RFC 1035)

• Specification ≤ 110 LOC
• Valid: Compressed + Uncompressed packets
• Data-dependent behavior used to parse response sections
• Variable-type resource records

Narcissus in Action

Evaluation

⊇

Format LoC LoP Higher-order
Sequencing (ThenC) 7 164 Y
Termination (DoneC) 1 28 Y

Conditionals (IfC) 25 204 Y
Booleans 4 24 N

Fixed-length Words 65 130 N
Unspecified Field 30 60 N

List with Encoded Length 40 90 N
String with Encoded Length 31 47 N

Option Type 5 79 N
Ascii Character 10 53 N

Enumerated Types 35 82 N
Variant Types 43 87 N

Domain Names 86 671 N
IP Checksums 15 1064 Y

Figure 10. Formats included in NARCISSUS with lines of
code (LoC) and lines of proof (LoP).

4. Deriving Correct-By-Construction

Decoders

NARCISSUS frames the decoder-synthesis problem as a user-
guided search for both a decoder function for the encoded
type and a proof that it is correct with respect to a specified
format. We define a type alias, CorrectDecoderFor, previously
seen in Figure 2, that packages these two terms together as
a dependent pair. CorrectDecoderFor is parameterized over the
state predicate StateOK, the data predicate DataOK, and the
format specification FormatSpec:
Definition CorrectDecoderFor StateOK DataOK FormatSpec :=

⌃ decode. StateOK, DataOK ` FormatSpec decode.

NARCISSUS includes a tactic synthesize decoder for automat-
ically finding inhabitants of CorrectDecoderFor. The behavior
of this tactic is broken into three phases:

Format Normalization This initial phase unfolds the iden-
tifiers of the parameters to CorrectDecoderFor, uses the
monad laws to normalize the format specification, sim-
plifies the resulting term, and caches any string constants
via an OCaml plugin to minimize the size of intermediate
proof terms in order to speed up the rest of the derivation.

Syntax-Directed Search The main body of the tactic searches
for an initial decoder implementation by repeatedly ap-
plying lemmas. This search consists of a series
of rules, triggered on the syntax of the current format in
the goal. In addition to specifying which lemma to apply,
these rules also attempt to discharge any hypotheses deal-
ing with data invariants via a hint database. The rule for
COMPOSECORRECT, for example, tries to automatically
show that the data invariant for the compound decoder
entails the data invariant used by the first decoder by using
this database.
The most interesting of these rules is the one that tries to
finish a derivation by applying DONECORRECT. This rule

produces two proof obligations: showing that the original
data can be completely reconstituted using previously
parsed data, and finding a decision procedure for the
current data predicate. The first obligation takes the form
of an equality between the original data a and some
unknown existential variable: a =?a. The finishing tactic
tries to solve this goal by using the equations built up in
the data predicate during the correctness proof to rewrite
the original encoded datatype into a term built entirely
from parsed data, before unifying the resulting term with
the ?a. Since a is not in the scope of the ?a, this latter step
only succeeds when the rewritten term only depends on
parsed data. The second obligation also uses an existential
variable, this time to represent the decision procedure
for the data predicate: PAa0 $?deca0 = true. The tactic
tries to discharge this goal by composing known decision
procedures for predicates in PA and simplifying away any
tautologies, including any predicates built up during the
correctness proof.

Decoder Optimization The final phase of synthesize decoder

tries to further simplify the synthesized decoder by rewrit-
ing with the monad laws and removing any redundant
tests in the decision procedure synthesized in the previous
step.

5. Extending the Framework

An extension to NARCISSUS consists of four pieces: a for-
mat, a decoder function, a proof of a rule relating
the two, and automation for incorporating this rule into
synthesize decoder. As an example, consider the format of
the Internet Protocol (IP) checksum used in the IP headers,
TCP packets, and UDP packets featured in our case studies.
Figure 11 presents the first three pieces of this extension.
Note that encode IPChecksum is a higher-order format com-
binator in the spirit of ThenC; the key difference is that it
uses the bytestrings produced by the two format parame-
ters to build the IP checksum (the one’s complement of the
bytestrings interpreted as lists of bytes), which it then inserts
between the two encoded bytestrings in the output bytestring.
decode IPChecksum first validates the checksum before decod-
ing the rest of the string; the rule for this decoder
guarantees this test will always succeed for uncorrupted data,
and can safely avoid parsing the rest of the string otherwise.

The correctness rule for decode IPChecksum, IPCORRECT,
closely mirrors COMPOSECORRECT, adding additional as-
sumptions that the bytestrings produced by each subformat
have constant length and are properly byte-aligned; these as-
sumptions are needed to prove the validity of the initial check-
sum test. Integrating this combinator into synthesize decoder

requires adding a new rule to the main loop of the tactic,
keyed on the encode IPChecksum combinator. After applying
IPCORRECT, this rule attempts to discharge the assumptions
by rewriting with a database of facts about the lengths of

Deriving Correct-By-Construction Decoders and Encoders from Binary Formats 9 2016/11/16

Component Library

Definition encode IPChecksum encode1 encode2 �E :=
(s, �E ’) encode1 �E ;
(s’, �E ’) encode2 �E ;
c { c | onesComplement (S2CharList (s ++ c ++ s’))

= 1111 1111 1111 1111 };
return (s ++ c ++ s’, �E ’)

Definition decode IPChecksum decode1 decode2 s �D :=
if onesComplement (S2CharList s) = 1111 1111 1111 1111
then (a’, s’, �D ’) decode1 s �D ;

(, s’, �D ’) decodeW s’ �D ’;
decode2 a’ s’ �D ’

else None

(8b s �E �0
E . PB b ! (s,�0

E) 2 encode1 b �E ! |s| = n) n mod 8 = 0 (8a s �E �0
E . PA a ! (s0,�0

E) 2 encode2 a �E ! |s0| = n0) n0 mod 8 = 0
Q, PB ` encode2 decode2 8a. PA a ! PB (⇡B a) 8b. PB b ! Q, �a. PA a ^ ⇡B a = b ` encode1 decode1 b

Q, PA ` encode IPChecksum (encode1(⇡Ba)) (encode2 a) decode IPChecksum decode1 decode2
(IPCORRECT)

Figure 11. Binary format, decoder, and correctness rule for IP Checksums.

Definition encode IPv4 Packet Spec (ip4 : IPv4 Packet) :=
encode IPChecksum
(encodeW (natToWord 4 4)
ThenC encodeN 4 (IPv4 Packet Header Len ip4)
ThenC encode unused W 8
ThenC encodeW ip4!TotalLength
ThenC encodeW ip4!ID
ThenC encodeW 1
ThenC encodeW ip4!DF
ThenC encodeW ip4!MF
ThenC encodeW ip4!FragmentO↵set
ThenC encodeW ip4!TTL
ThenC encode enum ProtocolTypeCodes ip4!Protocol
DoneC)

(encodeW ip4!SourceAddress
ThenC encodeW ip4!DestAddress
ThenC encode List encodeW ip4!Options
DoneC).

Figure 12. Format for IP version 4, utilizing the IP Check-
sum format.

encoded datatypes and the modulus operator, relying on the
body of the main loop to synthesize decoders for the sub-
formats. Figure 12 presents an example of the checksum
combinator being used in the format for the IP headers.

6. Evaluation

To evaluate the expressiveness of NARCISSUS, we imple-
mented parsers for the set of network stack protocols shown
in Figure 13. We note that the specifications of these for-
mats are relatively short, consisting of on average roughly
180 lines of code. The specifications for DNS, IP, UDP, and
TCP packets require adding the additional combinators to
the framework noted in Figure 10 but do not require modi-
fications to the core set of definitions. The source code for
these parsers is included in the accompanying supplementary
material.

The decoders that our framework produces are reasonably
efficient and sufficiently full-featured to be used as a drop-in
replacements for all parsing components of a typical TCP/IP
stack. We support this claim by extracting our decoders

Protocol LoC Interesting Features
Ethernet 150 Multiple format versions

ARP 41
IP 141 IP Checksum; underspecified fields

UDP 115 IP Checksum with pseudoheader
TCP 181 IP Checksum with pseudoheader; under-

specified fields
DNS 474 DNS compression; variant types

Figure 13. Formats included in case studies, with lines of
code and interesting features highlighted.

to OCaml and integrating the resulting code into the pure-
OCaml TCP/IP stack of MirageOS.

MirageOS [12] is a “library operating system that con-

structs unikernels for secure, high-performance network ap-

plications”: a collection of OCaml libraries that can be as-
sembled into a stand-alone kernel running on top of the Xen
hypervisor. Security is a core feature of MirageOS, making it
a natural target to integrate our decoders into. Concretely, this
entails patching the mirage-tcpip

3 library to replace its
packet deserializers by our own verified decoders and evaluat-
ing the performance and functionality of the resulting library.
This allowed us to benchmark a realistic network application,
the mirage.io website (mirage-www4), off a networking
stack enhanced with verified decoders. This shows that the
overhead of using our decoders in real-life applications is
very small.

By themselves, our decoders are about fifty times slower
than Mirage’s built-in decoders. The comparison is not en-
tirely fair, however: we do significantly more validation (in-
cluding checksum computations that require re-encoding a
pseudoheader after decoding a TCP or UDP packet, where
Mirage simply reads a few fields from an in-memory buffer),
we rely on intermediate structures to ease integration with
Mirage, and some parts of our framework are simply not
heavily optimized (for example, our decoders fetch data bit-

3 https://github.com/mirage/mirage-tcpip
4 https://github.com/mirage/mirage-www

Deriving Correct-By-Construction Decoders and Encoders from Binary Formats 10 2016/11/16

Derived Decoders

Evaluation

⊇

• MirageOS is a library operating system for secure, high-
performance network applications written in OCaml

• Replaced network stack of MirageOS with extracted OCaml
implementations of synthesized decoders.

• Found one problem in the test suite.

0 800 ms 850 ms 900 ms 950 ms

Mirage-only

+ Ethernet (+0.1%)

+ IP (+3.6%)

+ TCP (+7.1%)

Figure 14. Average page load times with 4 TCP/IP stacks.

by-bit from the underlying data buffers; we could instead
fetch whole bytes when the decoder performs byte-aligned
reads).

Set up Starting with the derived encoders, we use Coq’s
extraction mechanism to obtain OCaml libraries compatible
with Mirage (extraction is mostly straightforward, though
we customize it to use OCaml’s Int64 type for machine
words, regular OCaml integers for numbers, and an efficient
custom-built bit-string library to represent the bit buffers
used for encoding and decoding). We then replace the TCP,
UDP, IPv4, ARPv4, and Ethernet unmarshalling modules of
the mirage-tcpip library with simple wrappers around our
own extracted code and recompile the library and the Mirage
website (patches against Mirage’s public repository5 and
setup instructions are included as supplementary materials).
This whole process went very smoothly: Mirage’s test suite
did not reveal issues with our decoders (we did have to adjust
two tests: one of them used an IP packet with an EtherType
that we do not support, and the other one unmarshalled a
packet with an incorrect checksum, causing our decoders to
reject it).

Mirage’s website We recompile the Mirage website to serve
mirage.io atop a full user-space TCP/IP stack and measure
page load times as we replace each decoder in the stack by
its verified counterpart. We focus on the “blog” page of the
website: loading it causes the client to fetch about 4 MB of
data, obtained through 36 HTTP requests spread across 1040
TCP packets (covering page content, images, scripts, and
stylesheets). We used the debugging API of the Chromium
browser to accurately measure page load time. Figure 14
shows the average page load time across ten pages loads:
overall, transitioning all decoding to Facade incurs a 7% page
load overhead.

7. Related Work

Existing Frameworks There exist a number of frameworks
for generating parsers and encoders. Traditional parser gen-
eraters like YACC (Yet Another Compiler-Compiler) [10]
and ANTLR [16] automatically generate parser implemen-
tations from declarative Backus–Naur form specifications.
These frameworks decode inputs into the abstract syntax tree
(AST) defined by the input grammar; users must post-process

5 https://github.com/mirage/mirage

this AST (possibly using semantic actions) to convert it into
the desired representation. Semantic actions are effectively
user-defined programs that can easily introduce errors into
the synthesized decoder.

An alternative approach is taken by interface generators
like XDR [19], ASN.1 [7], Apache Avro [1], and Protocol
Buffers [21], which generate encoders and decoders from
user-defined data schemes. The underlying data format is
defined by the system, however, preventing data exchange
between programs using different frameworks. More impor-
tantly, the lack of fine-grained control over the physical data
representation prevents users from extending the format in
anyway, disallowing the use of interface generators with stan-
dardized formats like those used by network protocols.

The binpac compiler [15] supports a data-format specifi-
cation language specifically developed for network protocols,
including various general-purpose language constructs. Al-
though binpac generates efficent protocol parsers for exist-
ing network protocols, these is no support for extending the
specification language outside of the builtin constructs, and
the system provides no formal guarantees about the gener-
ated code. More recent frameworks, like PADS [8], Packet-
Types [13], and Datascript [2], feature sophisticated data-
description languages with support for complex data depen-
dencies and constraints for specific data schemes. Extending
these frameworks with new encoding strategies requires di-
rectly modifying each system’s code generator, again with no
guarantees about the correctness of the extended system.

Nail [4] is a tool for synthesizing parsers and generators
from a high-level format. Nail unifies the data-description
format and internal data layout into a single specification
and allows users to specify and automatically check depen-
dencies between encoded fields. More importantly, Nail na-
tively supports extensions to its parsers and generators via
user-defined stream transformations on the encoded data, al-
lowing it to capture protocol features that other frameworks
cannot. However, Nail provides no formal guarantees, and
these transformations can introduce bugs violating the frame-
work’s safety properties. We also note two other differences
between Nail and NARCISSUS. First, Nail has many more
orthogonal primitives than NARCISSUS has, as our primitives
may be considered to be little more than the definition of
decoder correctness. Second, while Nail provides flexibility
in describing binary formats, it maps each format to a fixed C
struct type, where NARCISSUS is compatible with arbitrary
Coq types.

In contrast to these other frameworks, NARCISSUS pro-
vides a strong, machine-checked guarantee that every syn-
thesized decoder properly inverts the data format and detects
any malformed inputs. Using Coq’s logic as the specification
language allows NARCISSUS to have a small trusted core of
built-in features while still being both highly extensible and
sound.

Deriving Correct-By-Construction Decoders and Encoders from Binary Formats 11 2016/11/16

average page load time
} performant?

Synthesizing Performant Code

⊇

Bedrock IL
ADT Implementations

Refinement

Mostly Deterministic
Gallina

Cito

Binary Code Generation

AMD64 Binary

Bedrock IL

Verified Compilation

Fiat Specifications
in Nondeterministic Gallina

Bedrock Specifications
in Separation Logic

Verified Compilation

Proof-Producing
Synthesis

Facade

Proof &
Program
Linking

Coq
Proof

Source
 Language

Translation
Mechanism

Imports / Exports
Dependency

Implements

Nondeterministic
Gallina

Ex
te

rn
al

 L
ib

ra
rie

s

Extraction

Verified Assembly
Implementation of Γ

FiatSpec
Binary Format

FiatImpl
Mostly Deterministic

Functional Implementation
{(Spec, FiatImpl) |

FiatImpl ≾ FiatSpec ⋀
{Impl | Impl ≾ Spec ⋀ Deterministic Impl}
→ { FiatImpl′ | FiatImpl′ ≾ FiatSpec
 ⋀ Deterministic FiatImpl′}

FacadeImpl
Imperative Implementation

 methi ↦ pi |
∀v. [x ↤ v] [ret ↤ FiatImpl.methi(v)]

pi

∅
Γ ⊦
Γ≈Spec ⋀

BedrockImpl
Assembly Implementation
 {methi ↦ oi |
∀Σ. {(Σ, pi)↓ ⋀ state(Σ)} oi

 {∃Σˈ. (Σ, pi) ⇓ Σˈ ⋀ state(Σˈ)}

Γ ⊦

www.facebook.com?
31.13.69.228!

import PacketParserSpec;
import RRecordDBSpec;
int main() {
 ADT implementing RRecordDBSpec db
 = DBInit();
 (∗ Socket Initialization ∗) 
 while (true) {
 string message = socket.get.message(); 
 ADT implementing PacketParserSpec request
 = BuildAST(message);
 results = db.FindRecords(request.qname());
 (* Process Results*)
 }
}

Definition DnsSchema :=
 Schema [relation RECORDS has schema
 <NAME :: name,
 TTL :: nat,
 CLASS :: RRecordClass,
 TYPE :: RRecordType,
 RLENGTH :: nat,
 RDATA :: name + SOA>
 where (fun t t' =>
 t!NAME = t’!NAME
 -> t!TYPE <> CNAME)].

 ADT RRecordDBSpec {
 RepType := Relation DnsSchema,
 def DBInit() := (* Initialize Record Table*);

 def AddRecord (rr : ResourceRecord) :=
 Insert rr into RECORDS,

 def FindRecords (qname : string) :=
 SortedBy IsPrefix
 (For (rr in RECORDS)
 Where (IsPrefix (rr!Name) qname)
 Return rr), …

On-Demand Library

On-Demand Library

Definition PacketParserFormat :=
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| ANCOUNT |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| NSCOUNT |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| ARCOUNT |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
|
/ QNAME /
/
/
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| QTYPE |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| QCLASS |
+—+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ …

 ADT PacketParserSpec {
 def ParsePacket (request : ByteString) :=

PacketParserFormat-1 request,
def EncodePacket (packet : Packet) :=

PacketParserFormat packet,
 … }

The Future?

http://www.facebook.com

Coq Proof Assistant

• Powerful tactic language for automating search

• Small trusted code base

• Rich higher-order logic

Implemented in

for specifying program behavior

for exploring implementation space

for certifying implementation meets specification

fiat

•Narcissus:
•Framework for synthesizing encoders and
decoders from formats

•User extensible
•Correct-by-Construction

•Generating performant code
• Integration into high-assurance systems

Today’s Talk

Questions?

