
Redesigning Secure Protocols to Compel
Grammatical Compliance Checking

Keith Irwin
Department of Computer Science

Winston-Salem State University

Winston-Salem, NC 27103

Email: irwinke@wssu.edu

Abstract—A frequent goal of LangSec research is to demon-
strate the benefits of having protocol definitions whose messages
can have their grammar checked to ensure that they are well-
formed prior to any other processing. It is generally taken as a
given that although we can design protocols which enable this
checking, we cannot compel implementers of these protocols to
actually carry out these checks. In this paper we demonstrate
that it is possible to modify the protocols through the use of
encryption such that the implementer is essentially required to
do the checking if they wish their implementation to interoperate
with other implementations without errors. Crucially, this will
be the case even when they are only sending and receiving
well-formed messages, thus transforming the silent vulnerability
of unchecked messages into an obvious error. In specific, we
demonstrate how to do this for checking whether or not messages
or portions thereof belong to a specified regular language and
whether or not they belong to a specified context-free language.

Index Terms—Network Security, Secure Protocols, Formal
Languages.

I. INTRODUCTION

A frequent aim of the LangSec community is to encourage

the creation and use of network protocols and file formats

for which it is possible to formally validate inputs before

processing them. This is done to prevent a range of attacks

which are based on sending malformed messages or files to

programs which intermingle processing and parsing, resulting

those programs behaving in ways which the original program-

mers would find both unexpected and undesirable.

Having the formats for which validation is at least possible

is a clear step in the right direction. However, having that

possibility does not necessarily imply that the input will

actually be validated before processing. It is an unfortunate

fact that in ordinary network protocols, it is easier to omit

security checks than to include them. There have been a range

of omitted checks which have caused difficulties from failing

to properly validate signatures to overlooking bounds checks to

failing to ensure that names match on delegated certificates.

We have also seen, time and again, simple file formats and

protocols whose messages could be formally validated before

processing not be validated at all.

Properly implementing validation often requires learning

how to use new tools or libraries, and it often seems easier

to programmers to write their own parsing code. Thus many

programs simply assume that the messages they receive are

well-formed and proceed on that assumption. Although the use

of tools like parser generators and regular expression libraires

can often improve the program and make it simpler and more

intuitive as well as providing validation, if a programmer has

already written a shotgun parser, adding the validation will

extra work which may be seen as unnecessary.

In practice, this sometimes means that the real-world forces

which impact development such as time-pressure, budget-

pressure, managing complexity, forgetfulness, and even lazi-

ness can push towards input not being validated. This is a

substantial security problem because unlike other classes of

bugs, security bugs are very commonly invisible to the end

user. To the user encountering normal, non-attack situations,

the version of the program which fails to validate its input

at all looks exactly like the version which validates its input

completely and correctly. This is because in normal operation

when no one is attacking them, both versions are being given

valid inputs. It is only once someone compromises the program

that the user suddenly becomes aware of the difference.

At first glance, this would simply seem an inevitable fact

of security about which we can do nothing. But with some

cleverness, it turns out that we can design security protocols

which address even this problem. Our previous work [1]

described a method by which we can build security protocols

which have the property that implementations which follow

these modified protocols are simpler when they implement the

security checks and more complex when they do not. However,

it only describes one particular type of check and this paper

introduces two more.

The basic technique which is used is to have a special

function G which can be easily calculated during the process

of carrying out the security check but is very complex to

calculate without doing the security check. The output of the G
function is then used to encrypt some portion of the message

or of a following message, thus requiring that the result of

G be calculated in order to read the messages. This means

that any implementation of the protocol must either do the

required checks and calculate the G function in the process or

find some complex way to calculate the G function without

doing the checks. Because checks are usually omitted due to

mistakes or time concerns rather than any desire on the part of

the implementer to avoid them, this should effectively compel

all implementations to carry out the checks.

299

2018 IEEE Symposium on Security and Privacy Workshops

© 2018, Keith Irwin. Under license to IEEE.
DOI 10.1109/SPW.2018.00048

If the checks are omitted, then the G function will not

be calculated and thus we expect that the implementation

which omits the checks will be broken in obvious ways as

it lacks the decryption key. This will be true even when

dealing only with well-formed messages which comply with

the security checks. Thus the omission of security checks

will not only be obvious when attacks appear, but should be

immediately clear as soon as an implementation is tried against

a reference implementation or other existing implementation

of the protocol. This approach is not quite a complete solution

to security checking because it is possible for a program to

carry out a security check and then ignore the results, but it

is a further step along the path.

As we urge people to move away from protocols whose

messages cannot be validated, it will be for naught if the

programs which implement these protocols do not validate

their messages. Thus, in this paper, we introduce techniques

to create protocols which implementions of the protocols are

essentially compelled to validate.

Specifically, in the scheme outlined in the previous paper,

there are different G functions for different classes of secu-

rity checks. The previous paper describes a G function for

inequality checks but due to space limitations did not include

G functions for more complex checks. In this paper we present

two new G function for validating that a string belongs to a

particular langauge.

The main contributions of the paper are:

• A G function for regular language membership checking

(section III). This function can be used in protocols to

demonstrate that an implementation has checked that a

string belongs to a specified regular language by ensuring

that a particular finite state automaton has accepted it.

• A G function for context-free language membership

(section IV). This function can be used in protocols to

demonstrate that an implementation has checked that a

string belongs to a specified context-free language by

demonstrating that a specified grammar accepts it.

We expect that these functions can be easily included into an

existing parsing process by inclusion into regular expression

parsing libraries, lexer generators, and parser generators. Thus

programmers will be compelled to use appropriate tools and

libraries which do the formal validation as part of the parsing

process.

II. G FUNCTIONS

Before we explain the new G functions in detail, it seems

beneficial to explain the desired properties of G functions.

In understanding these properties, it is important to note that

the expectation for how G functions will be used is that their

results will be incorporated into a message in the protocol as

an encryption key which is used to encrypt some important

portion of a message.

Often messages can be divided into one portion which is

checked and a second portion which will be encrypted using

the value of the G function from those checks. For example,

it may be that the message header has its checks carried out,

but the body just contains user data. For messages which

cannot be easily separated, the G functions for the checks

from one message can be used as the encryption key for the

next message sent. For simplicity of description, we are going

to assume the first case where a key is used within the same

message (although not on the same part which is checked).

This means that in normal operation the sender will create

a message, do the security checks while calculating the value

of G function for the message they are sending so that they

will have the needed encryption key, and then use that key to

encrypt a portion of the message. They do this not because

they would normally need to check any security properties of

the message they just generated but because the receiver will

need to do those checks to ensure that the protocol is secure.

When the receiver receives the message, they will carry out

the required checks while also calculating the value of the G
function. The result of that calculation can then be used to

decrypt the encrypted portion of the message and the receiver

can proceed.

Each G function is specific to some check which should

be carried out on a message. There are three properties for G
functions outlined in the previous paper [1]. To this list we

add one additional property which was implied by the paper

but not explicitly listed.

1) When the check fails, G should be undefined.

2) When the check succeeds, G should have a large range

of possible values.

3) When the check succeeds, the value of G should be

difficult to predict without doing the check.

4) There should not be a small mistake that the programmer

could make in implementing G which would result in

the correct value of G when the check succeeds and a

predictable value of G when the check fails.

There are two goals behind these three properties. The first

goal is that any implementation of a protocol which uses

a given G function must do one of three things in order

to interoperate with other implementations of the protocol:

properly implement the check, brute force the key, or have

complex code which computes the value of G without doing

the check. The second property above exists to make the

second option unattractive to implementers. Likewise, the third

property above exists to make the third option unattractive.

The second goal of the three properties is to make it unlikely

that an attacker could craft a message where the check fails

but where the implementation fails to recognize this. The first

property means that when the check fails there will be no value

of G to compute. The fourth property should mean that small

mistakes in implementing the check won’t open up potential

attacks. An example of a situation where the fourth property

might not be present would be if a G function included the

index where a particular value occurred on a list. Even though

that quantity is undefined when the value fails to appear in

the list, many implementations return default or failure values

like −1. Attackers would be able to recognize this and adjust

their encryption keys to match.

300

An easy way to construct a G function with these properties

is to use the Z function. This is originally defined in [1],

however there was an error in that definition. The corrected

version of the Z function is included here.

The Z function is a function which is undefined for the

value of 0, has a range of values otherwise, and which is

designed such that we can be fairly certain that there is no

simple implementation error which will produce correct values

for valid inputs and a value for an invalid input (in this case,

only 0).

The Z function assumes that the protocol specification

chooses two positive constants b and zb and a hash function

H . The Z function is designed so that it has to iterate through

one or two different cases to get from the input to the number

b generating a randomized hash along the way. Each of these

cases will approach their target rapidly (O(log(b))) but with

a number of repetitions which is hard to predict exactly.

The Z function is defined as follows:

Z(i) =

⎧⎪⎪⎨
⎪⎪⎩

zb if i = b

H(Z(2 ∗ i)) if 0 < i < b

H(Z(
⌊√

ib
⌋
)) if i > b

A proper implementation of a Z function will check if it

has been passed a zero and return this as an error as Z is

undefined for 0. However, an implementation which omits this

check might pass that 0 into one of the two recursive cases

(due to falling through to an else or not checking both parts

of the condition for the first case) However, in both cases if

given a 0 as input, they will be infinite loops thus ensuring that

no value will be returned in the event that an implementation

fails to check .

This does have the potential to turn a silent error caused by

a failure to check for malformed messages into a denial-of-

service attack. There may be some cases where this could be

worse such as systems where reliability problems could prove

fatal. However, in most systems, we argue that an obvious

shutdown of a system is preferable to a silent exploitation of

that system.

To use the Z function to create a G function, you create an

expression which evaluates to zero when the check fails and

non-zero when the check succeeds. Because the Z function is

undefined for Z(0) and would loop infinitely if implemented

without an explicit check for 0, G functions defined using Z
generally have the three properties so long as the expression

inside the Z function produces a wide range of non-zero values

for different messages.

When a protocol specifies that the messages it uses should

be members of a particular language, there are still a number

of things which might go incorrectly which would allow

implementations to accept messages which do not conform

to the specified language. The simplest is that the language

may not check the validity of the message at all. Another

possibility is that they might do informal validation. This could

take the form of writing custom code which tries to screen out

abnormal messages or recognize normal ones without formal

checking. Or it could also take the form of a “shotgun parser”

which parses as it processes the message and, as a result of

the complexity of logic, misses some cases.

Another possibility is that they could use code which they

believe will do formal validation, but which is insufficient or

incorrect. In general, when using a tool which is less powerful

than what is required to match the given language the way to

successfully accept messages which are known to be valid is

to be overly permissive in what you accept. For example, as

is well known, it is impossible to write a regular expression

which accepts exactly the language of all strings of the form

anbn. But it is trivially easy to build a regular expression which

accepts every string from that language as valid. The regular

expression a∗b∗ is one simple solution. In that example, a

programmer might feel that the implementation is correct.

After all, every valid message is accepted. Their testing may

include no invalid messages or only limited invalid messages.

For example, there are sometimes pattern-matching libraries

(a good example of this is the built-in pattern library in

Lua) which are not as expressive as regular expressions. A

programmer might use one of these to attempt to match a reg-

ular language and accidentally create code which also accepts

some messages which are outside the intended language. Or a

programmer could use a regular expression or a small group

of regular expressions to validate messages which should be

checked against a context-free language.

They also might attempt to implement their own regular

expression validator or their own parser and make mistakes in

the process of doing so. For example, their code might always

accept and that would not be noticed when only testing with

well-formed expressions.

We would like our system to expose these mistakes. Specif-

ically, if checks have not been implemented, this should

be obvious to the user because the program will lack the

knowledge of the G function value used to decrypt parts of the

message (or possibly the next message). Or, if the checks are

performed incorrectly, the wrong key should be derived some

of the time (even when the message is actually valid). When

the key is missing or the wrong key is derived, this means

that the encrypted data cannot be decrypted. It is expected that

this difficulty will be obvious to the user either in the form

of scrambled data or other errors resulting from messages or

portions of messages not being decrypted.

III. REGULAR LANGUAGE CHECKING

In this section we describe the construction of a G function

to ensure that an implementation has checked regular lan-

guage membership. There are several constants which will

be required in this G function which we assume will be

chosen by the protocol designer and then fixed in the protocol

specification.

The protocol should also specify a particular finite-state

automaton to carry out the recognition of the messages. We

would like the results of our G function to validate several

properties:

301

• That the string being recognized is the one from the

message.

• That the final state is an accept state.

• That the transitions that the implementation takes are

valid.

• That the correct FSA is in use

The first we will establish by ensuring that the data is mixed

into the G function by using information about the particular

transactions taken in our G function. The second and third we

will establish by ensuring that the G function is undefined in

the event that either any invalid transition is taken or if the

final state is not an accept state. The fourth we will tackle

through our labeling procedure which we will describe after

we define G since its function is somewhat orthogonal to the

other parts of the process. We must ensure these properties

while also ensuring that there are a range of different possible

values when the finite-state automaton accepts the string.

In defining G we assumed that we have a finite state au-

tomaton (FSA). In general, we define a finite-state automaton

in the standard way as having an input alphabet of Σ, a set of

states S, initial state s0 ∈ S, a state transition partial function

δ : S × Σ→ P(S), and a set F ⊂ S of accept states.

Now we are going to tackle the second property above by

defining a function A which takes in a deterministic finite

state automata, 〈Σ, S, s0, δ, F 〉, and a string, m, and returns

an integer value for use in defining G. An important property

of A is that A will be zero if the final state is not an accept

state and will otherwise be a non-zero number which reflects

the transitions which have been taken up until the final accept

state.

In order to do this, we first label every state with a unique

positive integer (in a way specified in the protocol) with the

property that accept states are labeled with even numbers and

non-accept states are labeled with odd numbers. So we define

a function b which represents this label such that b(s) is the

label on state s.

When we use our finite state automaton to recognize our

message m, this results in it transitioning through a series of

states, s0, s1, . . . , sn.

We then define a function a(i). This function will fold in the

value of the labels of the states thus connecting the input data

to the value, but it will also have one bit of information about

the last previous state to allow us to know if the sequence

ends in an accept state.

a(i) =
{

b(s0) i = 0
2a(i− 1) + b(si) i > 0

Then we let A(Σ, S, s0, δ, F, m) = a(n) · j where j is the

largest integer such that 2j divides a(n). If sn is not an accept

state then a(n) will be odd and thus j will be 0. If sn is an

accept state than j ≥ 1 and as b(s) > 0∀s ∈ S, it follows that

a(n) > 0. We will use this part to achieve the property that

only sequences of states which end in an accept state will be

valid.

Note that the size of a will be 2n + lg(b(s0)) in the

worst case. This is somewhat inconvenient, and we suspect

that the inputs could be processed differently to achieve the

same effective results, but for the moment, no such alternate

approach has occured to us. This refinement will be reserved

for future work.

Next we address the third property, that only valid transi-

tions are accepted. Specifically, we are concerned that tran-

sitions only occur in situations where δ is defined. If δ is

undefined for a certain combination of symbol and state, it is

possible that an implementation could accidentally transition

to a default state of some sort or accidentally follow the first

or last transition on its list.

For this property, we define a function V which takes in

a deterministic finite state automaton, 〈Σ, S, s0, δ, F 〉, and a

string, m, and returns an integer value for use in defining G.

The property of V is that it will be 0 if any invalid transitions

are taken.

To cause this to occur, we label each state and each symbol

in the alphabet with a unique prime number. We represent this

as a function p(x) where x ∈ S
⋃

Σ.

Next, for each state, we label it with a new number we

calculate which we represent with the function v(s). We

calculate v by multiplying p(s) by the p(σ) of each σ ∈ Σ
which is not a valid outgoing transition from that state.

Formally, we define a helper function h(s, σ) as so:

h(s, σ) =
{

1 δ(s, σ) ∈ S
p(σ) δ(s, σ) is undefined

Then we use that to define v(s) as follows:

v(s) =
∏
σ∈Σ

h(s, σ)

Then when our finite-state automaton processes m, m
corresponds to a set of symbols σ1, σ2, . . . , σn. This causes

transitions through a set of states s0, s1, . . . , sn. We thus define

V as follows:

V (Σ, S, s0, δ, F, m) =
n−1∏
i=0

v(si) mod p(σi+1)

What this does, in short, is it labels each state with the

product of its own label and all the labels of each symbol

which does not transition out of it. Then we take this product

and take it modulo the chosen symbol. Because these numbers

are all prime, that will be zero when and only when the symbol

whose transition was taken is not a part of a defined outgoing

transition.

Note that v(si) mod p(σi+1) can be calculated by calculat-

ing

v(si) mod p(σi+1) =

(
∏
σ∈Σ

h(s, σ) mod p(σi+1)) mod p(σi+1)

And thus this can potentially be computed without needing

arbitrary precision integer arithmetic. Instead, we can simply

maintain a bit vector for each state and a listing of which

primes have been chosen. Then we can calculate v(si) mod
p(σi+1) by doing repeated modulo multiplication.

302

To get the V function for the whole path, we then take the

v function for each state and multiply them all together. Thus

if any one was an invalid transaction, V will yield zero.

Both parts finished, we can now define

GFSA(Σ, S, s0, δ, F, m) = Z(A(Σ, S, s0, δ, F, m)·
V (Σ, S, s0, δ, F, m))

where A and V are defined as above and Z is the function

from the previous work which produces an undefined result

on 0 and a highly differing result for all other inputs.

A. Whole FSA Dependence

Our fourth property we wished to have above is that we

wanted to make sure that we were using the correct FSA. Our

worry is that rather than implementing the FSA specified in the

protocol, an implementor would accidentally leave out some

states or transitions or include spurious states or transitions,

but do so in a manner that common messages would still be

correctly recognized because the portion of the FSA exercised

by common messages was correct.

In order to do this, we are going to introduce a procedure

for giving the nodes different labels for each message. This

is somewhat expensive, and, as such, could be omitted in

the event that the protocol designer thinks it unlikely that

implementers might use the wrong finite state automaton.

If this procedure is in use, before we parse the message,

we first generate the labels represented by the function b that

we used when calculating the function A above. Specifically,

we want to fold data from the whole FSA into the labeling

process so that if there is a variance in the FSA this would be

reflected as mistakes in the b labels which would result in an

incorrect A value a reasonable percentage of the time, even

for well-formed messages, thus causing the value of G to not

match and the implementation thus to appear to be obviously

broken.

To begin the process when preparing a message to be sent,

we generate a random or psuedo-random seed, r. This seed

must be included in the message itself so that an identical

procedure can be carried out by the recipient.

We let Dδ be the domain of δ, that is the set of input values

for which δ is defined. We consider the set of transitions to be

the set T = {(s, σ, δ(s, σ))∀s, σ ∈ Dδ} We then assume that

we have some consistent deterministic ordering of T which

we represent by the function t : [0..|T | − 1]→ T .

We assume a set of variables bs∀s ∈ S which will be used

to define b(s) = bs. The initial value for all such variables

will be undefined. We wish to label all of the node, thus we

will run until all b(s) is defined for all s ∈ S. Then we follow

the following procedure which utilizes some hash function H
which we assume to be specified in the protocol::

h← r
while any bs is undefined do

i← i + 1
(s0, σ, s1)← t(h mod |T |)
j ← �v/|T | mod 2

if sj ∈ F then
f ← 0

else
f ← 1

end if
if bsj is undefined then

bsj ← 2v + f
else

bsj
← 2H(bsj

+ v) + f
end if
h← H(bsj

)
end while
When this procedure is used, we will select a series of

transitions and for each we will effectively ensure that either

its origin or destination is correct by changing the label for it

using a series of hashes. Because each hash is based on the

previous one, our whole path is dependent on each part being

correct. Thus, with each message, we will validate |S| different

transitions pseudo-randomly selected. If there are mistakes in

the FSA of either the sender or receiver of a message, this will

result in the wrong labels some of the time which will in turn

result in the wrong output of the G function. This should then

lead to obviously broken behavior for well-formed messages.

IV. CONTEXT-FREE LANGUAGE CHECKING

In designing a G fuction for recognizing a message or

message part which belongs to a particular context-free lan-

guage, we have to narrow things down some. Mismatching

G function calculations between the message sender and the

message receiver will result in a communications breakdown.

Obviously, this is what we desire if the checks are not being

carried out or if they are being carried out incorrectly. But if

there is more than one correct way to carry out a check, this

is then a problem.

In context-free languages in particular, we potentially face

such a problem. Even if we simply chose a uniform language,

there can be more than one grammar which parses the same

language. It’s not uncommon to take a published grammar

specification and make small tweaks which change the gener-

ated parse trees but not the accepted language in order to make

accommodations to the abilities of the parser generator in use.

The specification might be written with an LR(1) parser in

mind but the implementor might be using an LALR(1) parser

generator instead and it may well be the case that for the

particular language, either can parse it.

And even with the exact same set of production rules,

different parsers could generate different (but equivalent) parse

trees for the same data. There may exist a complex approach

to tolerating such vagueness and ensuring that the same G
function is calculated in all cases, but this paper is going to

take the easy way out. Instead, we require that the protocol

specify not just the language, but also the grammar and specific

details about the parsing algorithms which should be used to

a level of detail sufficient to ensure that when parsing the

language in question, the same parse tree will be generated in

all cases by both the sender and receiver. We assume that there

303

exists some parser P such that for a message m yields a parse

tree with root P (m) when m is in the specified language.

In order to create the G function for recognizing context-

free-languages we are actually going to leverage our work

from the previous section on creating G functions for finite

state automata. Although it is obviously the case that we

cannot use a single finite state automaton to recognize a

context-free language (unless it is also regular), we observe

that we do use finite-state machines in the normal process of

recognition. In practice, we use FSAs in the lexical analysis

portion to generate the lexemes which are then parsed by the

context-free language parser. But beyond that, each individual

production rule can actually be expressed as an FSA with

lexemes and production symbols as its alphabet.

Thus when we wish to validate that the parse tree is correct

relative to some grammar, we can treat it as a tree of different

FSAs and validate them the same way we would FSAs.

We could actually calculate a G function for each FSA
separately and then combine them using XOR in order to find

the key. But a more efficient approach would be to multiply

the results of the helper functions at each step.

In the previous section, we defined

GFSA(Σ, S, s0, δ, F, m) = Z(A(Σ, S, s0, δ, F, m) ·
V (Σ, S, s0, δ, F, m)) and along with that defined the

functions A and V . A is zero only when the FSA ended not

on an accept state and V is zero only when the FSA had

invalid transitions.

Each node in the parse tree is either a leaf node which

represents a lexeme or is a non-leaf node derived from some

production rule. In either case, there is an associated finite

state automaton. We can also consider there to be a list of

child nodes for each node. For leaf nodes the list of child

nodes will be an empty list. For each node in the parse tree,

n, which has a sequence of children c = {c1, c2, . . . , c|c|} and

a finite state automaton, 〈Σ, S, s0, δ, F 〉, we define

AV (n) = A(Σ, S, s0, δ, F, c)·

V (Σ, S, s0, δ, F, c) ·
|c|∏
i=1

AV (ci)i+1

Note that although there is no explicit base case for this

recursive definition, leaf nodes have no children and, as such,

|c| is 0 and thus their definition does not recurse further.

We raise the AV (ci) to a power so that we ensure that both

the correct children are present in the parse tree and also that

they are present in the correct order. With this in place, we

can define GCFL(P,m) = Z(AV (P (m)).
This function will be undefined in the event that the parser P

fails to accept m. This will be true either if the parser does not

return a root node, as it should not, or if it returns something

such as an incomplete or malformed parse tree. The individual

finite state automata which correspond to the production rules

thus serve as a check of parser correctness.

It should be noted, though, that unlike the G function for

finite state automata, this function fails to cause errors when

a parser is using a grammar which has differences from the

correct grammar but where those differences are not exposed

in the individual message being parsed. In the long run, we

would like an improved G function which does have this

property.

V. RELATED WORK

In general, this is paper expands a fairly new idea, and

as such, there is limited related work. There has been a fair

amount of research which shares our same goals of ensuring

the implementations are correct, but the others employ very

different means. We present a sampling here.

There are several papers focussed on applying formal

methods to verifying the correctness of implementations in-

cluding carrying out needed checks. Some of them focus

on model checking such as [2]. Others are more focussed

on conformance testing such as [3], [4]. These are both

good approaches, when they are used, but our approach has

the advantage that unlike tool use, protocol compliance is

generally not voluntary.

There have also been a number of papers which have

focused on verifying the correctness of security protocols

using model checking or theorem proving such as [5], [6],

[7]. This research is orthogonal to ours as we do not test the

correctness of the protocols at all, but rather just try to ensure

correct implementation. However, some of these have gone

beyond this into taking these formal descriptions of security

protocols and automatically generating code for them [8], [9]

which would also necessarily include needed checking. This

is a very reasonable approach, but again, has not been widely

deployed in the real world. Also, all of the existing automated

code generation tools for secure protocols are restricted to a

single language for output, which limits their impact. Changes

to the protocol itself will cause implementation changes across

all platforms.

VI. CONCLUSION AND FUTURE WORK

In this paper we have shown how you can design protocols

which should have the property that it is easier to implement a

program which does the grammatical checking than one which

skips it. We describe versions of the G function which can

serve this role for both regular languages and context-free

languages which thus covers most grammars whose use in

protocols is sensible.

There is some room for improvement. As we noted in the

section for the G function for context-free languages, our

function does not catch the case where a program implements a

variant of the correct language which overlaps for all common

messages but differs for unusual ones. Our future plans include

attempting to redesign it to provide this assurance.

Also, although there is a compelling case why this approach

should result in protocols doing the required checks we have

not validated these results experimentally. To do so, we would

need to build two versions of a given protocol one with our

technique and one without and then have two randomized

groups of programmers implement them. Then we could

304

compare how frequently programmers missed checks in both

cases.

We are also planning to describe formally and implement

in code processes for transforming a description of a normal

secure protocol and its required checks into a protocol modi-

fied to add the required G functions to assure that the checks

have been completed. This modified protocol would include

all required labels and other constants.

Thus, we could also then automatically generate implemen-

tations utilizing such a specification or have a standard library

which can handle the validation stages for any protocol so

described before handing the result over to an implementation

of the unmodified protocol.

In summary, this approach has a lot of promise, but there

remains a lot of work which can be done to move it towards

practicality.

REFERENCES

[1] K. Irwin, “Redesigning secure protocols to compel security checks,”
in Security Protocols XXIII, B. Christianson, P. Švenda, V. Matyáš,
J. Malcolm, F. Stajano, and J. Anderson, Eds. Cham, Switzerland:
Springer International Publishing, 2015, pp. 22–29.

[2] M. Musuvathi and D. R. Engler, “Model checking large network protocol
implementations,” in Proceedings of the 1st conference on Symposium
on Networked Systems Design and Implementation - Volume 1, ser.
NSDI’04. Berkeley, CA, USA: USENIX Association, 2004, pp. 12–12.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1251175.1251187

[3] B. S. Bosik and M. mit Uyar, “Finite state machine based
formal methods in protocol conformance testing: from theory to
implementation,” Computer Networks and ISDN Systems, vol. 22,
no. 1, pp. 7 – 33, 1991, 9th IFIP TC-6 International Symposium

on Protocol Specification, Testing and Verification. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/016975529190079R

[4] A. V. Aho, A. T. Dahbura, D. Lee, and M. U. Uyar, “Conformance
testing methodologies and architectures for osi protocols,” R. J.
Linn and M. U. Uyar, Eds. Los Alamitos, CA, USA: IEEE
Computer Society Press, 1995, ch. An optimization technique for
protocol conformance test generation based on UIO sequences and
rural Chinese postman tours, pp. 427–438. [Online]. Available:
http://dl.acm.org/citation.cfm?id=202035.202073

[5] D. X. Song, “Athena: a new efficient automatic checker for security
protocol analysis,” in Proceedings of the 12th IEEE workshop on
Computer Security Foundations, ser. CSFW ’99. Washington, DC,
USA: IEEE Computer Society, 1999, pp. 192–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=794199.795118

[6] D. Basin, S. Mdersheim, and L. Vigan, “An on-the-fly model-checker for
security protocol analysis,” in Computer Security ESORICS 2003, ser.
Lecture Notes in Computer Science, E. Snekkenes and D. Gollmann, Eds.
Springer Berlin / Heidelberg, 2003, vol. 2808, pp. 253–270.

[7] G. Lowe, “Breaking and fixing the needham-schroeder public-key proto-
col using fdr,” in Tools and Algorithms for the Construction and Analysis
of Systems, ser. Lecture Notes in Computer Science, T. Margaria and
B. Steffen, Eds. Springer Berlin / Heidelberg, 1996, vol. 1055, pp.
147–166.

[8] D. X. Song, A. Perrig, and D. Phan, “Agvi - automatic generation,
verification, and implementation of security protocols,” in Proceedings
of the 13th International Conference on Computer Aided Verification,
ser. CAV ’01. London, UK, UK: Springer-Verlag, 2001, pp. 241–245.
[Online]. Available: http://dl.acm.org/citation.cfm?id=647770.734267

[9] D. Pozza, R. Sisto, and L. Durante, “Spi2java: Automatic cryptographic
protocol java code generation from spi calculus,” in Proceedings of
the 18th International Conference on Advanced Information Networking
and Applications - Volume 2, ser. AINA ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 400–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=977394.977464

305

